共轭搜索问题与Andrews-Curtis猜想

IF 0.1 Q4 MATHEMATICS
Dmitry Panteleev, A. Ushakov
{"title":"共轭搜索问题与Andrews-Curtis猜想","authors":"Dmitry Panteleev, A. Ushakov","doi":"10.1515/gcc-2019-2005","DOIUrl":null,"url":null,"abstract":"Abstract We develop new computational methods for studying potential counterexamples to the Andrews–Curtis conjecture, in particular, Akbulut–Kurby examples AK ⁡ ( n ) {\\operatorname{AK}(n)} . We devise a number of algorithms in an attempt to disprove the most interesting counterexample AK ⁡ ( 3 ) {\\operatorname{AK}(3)} . That includes an efficient implementation of the folding procedure for pseudo-conjugacy graphs, based on the original modification of a classic disjoint-set data structure. To improve metric properties of the search space (the set of balanced presentations of the trivial group), we introduce a new transformation, called an ACM-move, that generalizes the original Andrews–Curtis transformations and discuss details of a practical implementation. To reduce growth of the search space, we introduce a strong equivalence relation on balanced presentations and study the space modulo automorphisms of the underlying free group. We prove that automorphism moves can be applied to Akbulut–Kurby presentations. The improved technique allows us to enumerate balanced presentations AC-equivalent to AK ⁡ ( 3 ) {\\operatorname{AK}(3)} with relations of lengths up to 20 (previous record was 17).","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"20 1","pages":"43 - 60"},"PeriodicalIF":0.1000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/gcc-2019-2005","citationCount":"6","resultStr":"{\"title\":\"Conjugacy search problem and the Andrews–Curtis conjecture\",\"authors\":\"Dmitry Panteleev, A. Ushakov\",\"doi\":\"10.1515/gcc-2019-2005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We develop new computational methods for studying potential counterexamples to the Andrews–Curtis conjecture, in particular, Akbulut–Kurby examples AK ⁡ ( n ) {\\\\operatorname{AK}(n)} . We devise a number of algorithms in an attempt to disprove the most interesting counterexample AK ⁡ ( 3 ) {\\\\operatorname{AK}(3)} . That includes an efficient implementation of the folding procedure for pseudo-conjugacy graphs, based on the original modification of a classic disjoint-set data structure. To improve metric properties of the search space (the set of balanced presentations of the trivial group), we introduce a new transformation, called an ACM-move, that generalizes the original Andrews–Curtis transformations and discuss details of a practical implementation. To reduce growth of the search space, we introduce a strong equivalence relation on balanced presentations and study the space modulo automorphisms of the underlying free group. We prove that automorphism moves can be applied to Akbulut–Kurby presentations. The improved technique allows us to enumerate balanced presentations AC-equivalent to AK ⁡ ( 3 ) {\\\\operatorname{AK}(3)} with relations of lengths up to 20 (previous record was 17).\",\"PeriodicalId\":41862,\"journal\":{\"name\":\"Groups Complexity Cryptology\",\"volume\":\"20 1\",\"pages\":\"43 - 60\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/gcc-2019-2005\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complexity Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gcc-2019-2005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2019-2005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

我们开发了新的计算方法来研究Andrews-Curtis猜想的潜在反例,特别是Akbulut-Kurby样例AK (n) {\operatorname{AK}(n)}。我们设计了许多算法,试图反驳最有趣的反例AK (3) {\operatorname{AK}(3)}。其中包括基于经典不相交集数据结构的原始修改的伪共轭图的折叠过程的有效实现。为了改进搜索空间(平凡群的平衡表示集合)的度量性质,我们引入了一种新的变换,称为ACM-move,它推广了原始的Andrews-Curtis变换,并讨论了实际实现的细节。为了减少搜索空间的增长,我们在平衡表示上引入了强等价关系,并研究了自由群的空间模自同构。我们证明了自同构移动可以应用于Akbulut-Kurby表示。改进的技术允许我们枚举平衡表示ac -等效于AK (3) {\operatorname{AK}(3)},其长度关系可达20(之前的记录是17)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conjugacy search problem and the Andrews–Curtis conjecture
Abstract We develop new computational methods for studying potential counterexamples to the Andrews–Curtis conjecture, in particular, Akbulut–Kurby examples AK ⁡ ( n ) {\operatorname{AK}(n)} . We devise a number of algorithms in an attempt to disprove the most interesting counterexample AK ⁡ ( 3 ) {\operatorname{AK}(3)} . That includes an efficient implementation of the folding procedure for pseudo-conjugacy graphs, based on the original modification of a classic disjoint-set data structure. To improve metric properties of the search space (the set of balanced presentations of the trivial group), we introduce a new transformation, called an ACM-move, that generalizes the original Andrews–Curtis transformations and discuss details of a practical implementation. To reduce growth of the search space, we introduce a strong equivalence relation on balanced presentations and study the space modulo automorphisms of the underlying free group. We prove that automorphism moves can be applied to Akbulut–Kurby presentations. The improved technique allows us to enumerate balanced presentations AC-equivalent to AK ⁡ ( 3 ) {\operatorname{AK}(3)} with relations of lengths up to 20 (previous record was 17).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信