参数应力下的信用问题:一种概率方法

IF 0.9 2区 文学 0 LANGUAGE & LINGUISTICS
A. Nazarov, G. Jarosz
{"title":"参数应力下的信用问题:一种概率方法","authors":"A. Nazarov, G. Jarosz","doi":"10.16995/glossa.5884","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a novel domain-general, statistical learning model for P&P grammars: the Expectation Driven Parameter Learner (EDPL). We show that the EDPL provides a mathematically principled solution to the Credit Problem (Dresher 1999). We present the first systematic tests of the EDPL and an existing and closely related model, the Naïve Parameter Learner (NPL), on a full stress typology, the one generated by Dresher & Kaye’s (1990) stress parameter framework. This framework has figured prominently in the debate about the necessity of domain-specific mechanisms for learning of parametric stress. The essential difference between the two learning models is that the EDPL incorporates a mechanism that directly tackles the Credit Problem, while the NPL does not. We find that the NPL fails to cope with the ambiguity of this stress system both in terms of learning success and data complexity, while the EDPL performs well on both metrics. Based on these results, we argue that probabilistic inference provides a viable domain-general approach to parametric stress learning, but only when learning involves an inferential process that directly addresses the Credit Problem. We also present in-depth analyses of the learning outcomes, showing how learning outcomes depend crucially on the structural ambiguities posited by a particular phonological theory, and how these learning difficulties correspond to typological gaps.","PeriodicalId":46319,"journal":{"name":"Glossa-A Journal of General Linguistics","volume":"18 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Credit Problem in parametric stress: A probabilistic approach\",\"authors\":\"A. Nazarov, G. Jarosz\",\"doi\":\"10.16995/glossa.5884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a novel domain-general, statistical learning model for P&P grammars: the Expectation Driven Parameter Learner (EDPL). We show that the EDPL provides a mathematically principled solution to the Credit Problem (Dresher 1999). We present the first systematic tests of the EDPL and an existing and closely related model, the Naïve Parameter Learner (NPL), on a full stress typology, the one generated by Dresher & Kaye’s (1990) stress parameter framework. This framework has figured prominently in the debate about the necessity of domain-specific mechanisms for learning of parametric stress. The essential difference between the two learning models is that the EDPL incorporates a mechanism that directly tackles the Credit Problem, while the NPL does not. We find that the NPL fails to cope with the ambiguity of this stress system both in terms of learning success and data complexity, while the EDPL performs well on both metrics. Based on these results, we argue that probabilistic inference provides a viable domain-general approach to parametric stress learning, but only when learning involves an inferential process that directly addresses the Credit Problem. We also present in-depth analyses of the learning outcomes, showing how learning outcomes depend crucially on the structural ambiguities posited by a particular phonological theory, and how these learning difficulties correspond to typological gaps.\",\"PeriodicalId\":46319,\"journal\":{\"name\":\"Glossa-A Journal of General Linguistics\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glossa-A Journal of General Linguistics\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://doi.org/10.16995/glossa.5884\",\"RegionNum\":2,\"RegionCategory\":\"文学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"LANGUAGE & LINGUISTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glossa-A Journal of General Linguistics","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.16995/glossa.5884","RegionNum":2,"RegionCategory":"文学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"LANGUAGE & LINGUISTICS","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们引入了一种新的领域通用的P&P语法统计学习模型:期望驱动参数学习器(EDPL)。我们证明了EDPL为信用问题提供了一个数学上有原则的解决方案(Dresher 1999)。我们提出了EDPL的第一个系统测试和一个现有的和密切相关的模型,Naïve参数学习器(NPL),在一个完整的应力类型上,由Dresher和Kaye(1990)的应力参数框架生成。该框架在关于参数应力学习的特定领域机制的必要性的辩论中占有突出地位。两种学习模型之间的本质区别在于,EDPL包含了直接解决信用问题的机制,而NPL则没有。我们发现,在学习成功和数据复杂性方面,NPL未能处理这种压力系统的模糊性,而EDPL在这两个指标上都表现良好。基于这些结果,我们认为概率推理为参数应力学习提供了一种可行的域通用方法,但仅当学习涉及直接解决信用问题的推理过程时。我们还对学习结果进行了深入分析,展示了学习结果如何在很大程度上取决于特定音系理论所提出的结构歧义,以及这些学习困难如何与类型学差距相对应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Credit Problem in parametric stress: A probabilistic approach
In this paper, we introduce a novel domain-general, statistical learning model for P&P grammars: the Expectation Driven Parameter Learner (EDPL). We show that the EDPL provides a mathematically principled solution to the Credit Problem (Dresher 1999). We present the first systematic tests of the EDPL and an existing and closely related model, the Naïve Parameter Learner (NPL), on a full stress typology, the one generated by Dresher & Kaye’s (1990) stress parameter framework. This framework has figured prominently in the debate about the necessity of domain-specific mechanisms for learning of parametric stress. The essential difference between the two learning models is that the EDPL incorporates a mechanism that directly tackles the Credit Problem, while the NPL does not. We find that the NPL fails to cope with the ambiguity of this stress system both in terms of learning success and data complexity, while the EDPL performs well on both metrics. Based on these results, we argue that probabilistic inference provides a viable domain-general approach to parametric stress learning, but only when learning involves an inferential process that directly addresses the Credit Problem. We also present in-depth analyses of the learning outcomes, showing how learning outcomes depend crucially on the structural ambiguities posited by a particular phonological theory, and how these learning difficulties correspond to typological gaps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
87
审稿时长
62 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信