{"title":"多谐算子Hardy - Rellich常数的估计及其推广","authors":"F. Avkhadiev","doi":"10.13108/2017-9-3-8","DOIUrl":null,"url":null,"abstract":"We prove the lower bounds for the functions introduced as the maximal constants in the Hardy and Rellich type inequalities for polyharmonic operator of order m in domains in a Euclidean space. In the proofs we employ essentially the known integral inequality by O.A. Ladyzhenskaya and its generalizations. For the convex domains we establish two generalizations of the known results obtained in the paper M.P. Owen, Proc. Royal Soc. Edinburgh, 1999 and in the book A.A. Balinsky, W.D. Evans, R.T. Lewis, The analysis and geometry of hardy’s inequality, Springer, 2015. In particular, we obtain a new proof of the theorem by M.P. Owen for polyharmonic operators in convex domains. For the case of arbitrary domains we prove universal lower bound for the constants in the inequalities for mth order polyharmonic operators by using the products of m different constants in Hardy type inequalities. This allows us to obtain explicit lower bounds for the constants in Rellich type inequalities for the dimension two and three. In the last section of the paper we discuss two open problems. One of them is similar to the problem by E.B. Davies on the upper bounds for the Hardy constants. The other problem concerns the comparison of the constants in Hardy and Rellich type inequalities for the operators defined in three-dimensional domains.","PeriodicalId":43644,"journal":{"name":"Ufa Mathematical Journal","volume":"28 1","pages":"8-17"},"PeriodicalIF":0.5000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Estimates of Hardy - Rellich constants for polyharmonic operators and their generalizations\",\"authors\":\"F. Avkhadiev\",\"doi\":\"10.13108/2017-9-3-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the lower bounds for the functions introduced as the maximal constants in the Hardy and Rellich type inequalities for polyharmonic operator of order m in domains in a Euclidean space. In the proofs we employ essentially the known integral inequality by O.A. Ladyzhenskaya and its generalizations. For the convex domains we establish two generalizations of the known results obtained in the paper M.P. Owen, Proc. Royal Soc. Edinburgh, 1999 and in the book A.A. Balinsky, W.D. Evans, R.T. Lewis, The analysis and geometry of hardy’s inequality, Springer, 2015. In particular, we obtain a new proof of the theorem by M.P. Owen for polyharmonic operators in convex domains. For the case of arbitrary domains we prove universal lower bound for the constants in the inequalities for mth order polyharmonic operators by using the products of m different constants in Hardy type inequalities. This allows us to obtain explicit lower bounds for the constants in Rellich type inequalities for the dimension two and three. In the last section of the paper we discuss two open problems. One of them is similar to the problem by E.B. Davies on the upper bounds for the Hardy constants. The other problem concerns the comparison of the constants in Hardy and Rellich type inequalities for the operators defined in three-dimensional domains.\",\"PeriodicalId\":43644,\"journal\":{\"name\":\"Ufa Mathematical Journal\",\"volume\":\"28 1\",\"pages\":\"8-17\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ufa Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13108/2017-9-3-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ufa Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13108/2017-9-3-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
摘要
我们证明了欧几里德空间中m阶多谐算子的Hardy和Rellich型不等式中以极大常数形式引入的函数的下界。在证明中,我们基本上采用了Ladyzhenskaya提出的已知的积分不等式及其推广。对于凸域,我们建立了M.P. Owen, Proc. Royal Soc论文中已知结果的两个推广。A.A. Balinsky, W.D. Evans, R.T. Lewis,《哈代不等式的分析与几何》,Springer, 2015。特别地,我们得到了M.P. Owen关于凸域上多谐算子定理的一个新的证明。在任意定域下,利用Hardy型不等式中m个不同常数的积证明了m阶多调和算子不等式中常数的普遍下界。这使我们能够获得第2维和第3维Rellich型不等式中常数的显式下界。在论文的最后一部分,我们讨论了两个开放的问题。其中一个类似于E.B. Davies关于Hardy常数上界的问题。另一个问题涉及在三维域上定义的算子的Hardy型不等式和Rellich型不等式常数的比较。
Estimates of Hardy - Rellich constants for polyharmonic operators and their generalizations
We prove the lower bounds for the functions introduced as the maximal constants in the Hardy and Rellich type inequalities for polyharmonic operator of order m in domains in a Euclidean space. In the proofs we employ essentially the known integral inequality by O.A. Ladyzhenskaya and its generalizations. For the convex domains we establish two generalizations of the known results obtained in the paper M.P. Owen, Proc. Royal Soc. Edinburgh, 1999 and in the book A.A. Balinsky, W.D. Evans, R.T. Lewis, The analysis and geometry of hardy’s inequality, Springer, 2015. In particular, we obtain a new proof of the theorem by M.P. Owen for polyharmonic operators in convex domains. For the case of arbitrary domains we prove universal lower bound for the constants in the inequalities for mth order polyharmonic operators by using the products of m different constants in Hardy type inequalities. This allows us to obtain explicit lower bounds for the constants in Rellich type inequalities for the dimension two and three. In the last section of the paper we discuss two open problems. One of them is similar to the problem by E.B. Davies on the upper bounds for the Hardy constants. The other problem concerns the comparison of the constants in Hardy and Rellich type inequalities for the operators defined in three-dimensional domains.