使用Web作为语料库对文档进行半监督分类

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
R. Cabrera
{"title":"使用Web作为语料库对文档进行半监督分类","authors":"R. Cabrera","doi":"10.4995/THESIS/10251/6562","DOIUrl":null,"url":null,"abstract":"Tesis doctoral en reconocimiento de formas e inteligencia artificial realizada en la Universidad Politecnica de Valencia por Rafael Guzman Cabrera bajo la direccion de los doctores Paolo Rosso y Manuel Montes y Gomez (INAOE, Mexico). La defensa de la tesis tuvo lugar el 24 de noviembre ante el tribunal formado por los doctores Manuel Palomar Sanz (Universidad de Alicante), Paloma Martinez Fernandez (Universidad Carlos III de Madrid), Luis Villasenor Pineda (INAOE, Mexico), Grigori Sidorov (Instituto Politecnico Nacional, Mexico) y Antonio Molina Marco (Universidad Politecnica de Valencia). La calificacion obtenida fue Sobresaliente Cum Laude por unanimidad.\n\nLa mayoria de los metodos para la categorizacion automatica de documentos estan basados en tecnicas de aprendizaje supervisado y, por consecuencia, tienen el problema de requerir un gran numero de instancias de entrenamiento. Con la finalidad de afrontar este problema, en esta tesis se propone un nuevo metodo semi-supervisado para la categorizacion de documentos, el cual considera la extraccion automatica de ejemplos no etiquetados de la Web y su incorporacion al conjunto de entrenamiento. los resultados obtenidos permiten ver la efectividad del metodo desarrollado.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2011-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Categorización semi-supervisada de Documentos usando la Web como corpus\",\"authors\":\"R. Cabrera\",\"doi\":\"10.4995/THESIS/10251/6562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tesis doctoral en reconocimiento de formas e inteligencia artificial realizada en la Universidad Politecnica de Valencia por Rafael Guzman Cabrera bajo la direccion de los doctores Paolo Rosso y Manuel Montes y Gomez (INAOE, Mexico). La defensa de la tesis tuvo lugar el 24 de noviembre ante el tribunal formado por los doctores Manuel Palomar Sanz (Universidad de Alicante), Paloma Martinez Fernandez (Universidad Carlos III de Madrid), Luis Villasenor Pineda (INAOE, Mexico), Grigori Sidorov (Instituto Politecnico Nacional, Mexico) y Antonio Molina Marco (Universidad Politecnica de Valencia). La calificacion obtenida fue Sobresaliente Cum Laude por unanimidad.\\n\\nLa mayoria de los metodos para la categorizacion automatica de documentos estan basados en tecnicas de aprendizaje supervisado y, por consecuencia, tienen el problema de requerir un gran numero de instancias de entrenamiento. Con la finalidad de afrontar este problema, en esta tesis se propone un nuevo metodo semi-supervisado para la categorizacion de documentos, el cual considera la extraccion automatica de ejemplos no etiquetados de la Web y su incorporacion al conjunto de entrenamiento. los resultados obtenidos permiten ver la efectividad del metodo desarrollado.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2011-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4995/THESIS/10251/6562\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/THESIS/10251/6562","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在Paolo Rosso和Manuel Montes y Gomez博士(INAOE,墨西哥)的指导下,Rafael Guzman Cabrera在巴伦西亚理工大学完成了关于形状识别和人工智能的博士论文。辩护论点有地方法院11月24日由医生Manuel鸡笼有时Sanz(阿利坎特大学)、鸽子Martinez Fernandez(马德里卡洛斯三世大学),Luis Villasenor覆(INAOE Mexico)、Grigori Sidorov (Politecnico研究所国家、墨西哥)和安东尼奥·莫利纳(瓦伦西亚)Politecnica大学框架。获得的评分是一致的,以优异的成绩。大多数自动文档分类方法都基于监督学习技术,因此存在需要大量培训实例的问题。为了解决这一问题,本文提出了一种新的半监督文档分类方法,该方法考虑了从Web中自动提取未标记的示例并将其纳入培训集。所获得的结果表明了所开发方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Categorización semi-supervisada de Documentos usando la Web como corpus
Tesis doctoral en reconocimiento de formas e inteligencia artificial realizada en la Universidad Politecnica de Valencia por Rafael Guzman Cabrera bajo la direccion de los doctores Paolo Rosso y Manuel Montes y Gomez (INAOE, Mexico). La defensa de la tesis tuvo lugar el 24 de noviembre ante el tribunal formado por los doctores Manuel Palomar Sanz (Universidad de Alicante), Paloma Martinez Fernandez (Universidad Carlos III de Madrid), Luis Villasenor Pineda (INAOE, Mexico), Grigori Sidorov (Instituto Politecnico Nacional, Mexico) y Antonio Molina Marco (Universidad Politecnica de Valencia). La calificacion obtenida fue Sobresaliente Cum Laude por unanimidad. La mayoria de los metodos para la categorizacion automatica de documentos estan basados en tecnicas de aprendizaje supervisado y, por consecuencia, tienen el problema de requerir un gran numero de instancias de entrenamiento. Con la finalidad de afrontar este problema, en esta tesis se propone un nuevo metodo semi-supervisado para la categorizacion de documentos, el cual considera la extraccion automatica de ejemplos no etiquetados de la Web y su incorporacion al conjunto de entrenamiento. los resultados obtenidos permiten ver la efectividad del metodo desarrollado.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信