M. Meuwissen, A. E. Van der Waal, I. Hovens, C. Rentrop
{"title":"纳米颗粒填充下填料的热力学特性","authors":"M. Meuwissen, A. E. Van der Waal, I. Hovens, C. Rentrop","doi":"10.1109/ESIME.2006.1644015","DOIUrl":null,"url":null,"abstract":"This paper describes work carried out as part of a larger project aimed at the development of nanosized particle filled underfill material. Several characterisation experiments have been applied to study the influence of these particles on the curing behaviour and the thermomechanical properties such as the coefficient of thermal expansion, geltime, glass transition temperature, and modulus. Constitutive models are assessed for their ability to describe the observed behaviour","PeriodicalId":60796,"journal":{"name":"微纳电子与智能制造","volume":"1 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ESIME.2006.1644015","citationCount":"0","resultStr":"{\"title\":\"Thermo-mechanical characterisation of a nanosized particle filled underfill\",\"authors\":\"M. Meuwissen, A. E. Van der Waal, I. Hovens, C. Rentrop\",\"doi\":\"10.1109/ESIME.2006.1644015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes work carried out as part of a larger project aimed at the development of nanosized particle filled underfill material. Several characterisation experiments have been applied to study the influence of these particles on the curing behaviour and the thermomechanical properties such as the coefficient of thermal expansion, geltime, glass transition temperature, and modulus. Constitutive models are assessed for their ability to describe the observed behaviour\",\"PeriodicalId\":60796,\"journal\":{\"name\":\"微纳电子与智能制造\",\"volume\":\"1 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/ESIME.2006.1644015\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"微纳电子与智能制造\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1109/ESIME.2006.1644015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"微纳电子与智能制造","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1109/ESIME.2006.1644015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermo-mechanical characterisation of a nanosized particle filled underfill
This paper describes work carried out as part of a larger project aimed at the development of nanosized particle filled underfill material. Several characterisation experiments have been applied to study the influence of these particles on the curing behaviour and the thermomechanical properties such as the coefficient of thermal expansion, geltime, glass transition temperature, and modulus. Constitutive models are assessed for their ability to describe the observed behaviour