Gross-Pitaevskii方程的相互作用螺旋行波

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
J. D'avila, M. Pino, María Medina, Rémy Rodiac
{"title":"Gross-Pitaevskii方程的相互作用螺旋行波","authors":"J. D'avila, M. Pino, María Medina, Rémy Rodiac","doi":"10.4171/aihpc/32","DOIUrl":null,"url":null,"abstract":"Abstract. We consider the 3D Gross-Pitaevskii equation i∂tψ +∆ψ + (1 − |ψ| )ψ = 0 for ψ : R× R → C and construct traveling waves solutions to this equation. These are solutions of the form ψ(t, x) = u(x1, x2, x3 −Ct) with a velocity C of order ε| log ε| for a small parameter ε > 0. We build two different types of solutions. For the first type, the functions u have a zero-set (vortex set) close to an union of n helices for n ≥ 2 and near these helices u has degree 1. For the second type, the functions u have a vortex filament of degree −1 near the vertical axis e3 and n ≥ 4 vortex filaments of degree +1 near helices whose axis is e3. In both cases the helices are at a distance of order 1/(ε √","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Interacting helical traveling waves for the Gross–Pitaevskii equation\",\"authors\":\"J. D'avila, M. Pino, María Medina, Rémy Rodiac\",\"doi\":\"10.4171/aihpc/32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. We consider the 3D Gross-Pitaevskii equation i∂tψ +∆ψ + (1 − |ψ| )ψ = 0 for ψ : R× R → C and construct traveling waves solutions to this equation. These are solutions of the form ψ(t, x) = u(x1, x2, x3 −Ct) with a velocity C of order ε| log ε| for a small parameter ε > 0. We build two different types of solutions. For the first type, the functions u have a zero-set (vortex set) close to an union of n helices for n ≥ 2 and near these helices u has degree 1. For the second type, the functions u have a vortex filament of degree −1 near the vertical axis e3 and n ≥ 4 vortex filaments of degree +1 near helices whose axis is e3. In both cases the helices are at a distance of order 1/(ε √\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/aihpc/32\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/aihpc/32","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

摘要我们考虑三维Gross-Pitaevskii方程i∂tψ +∆ψ +(1−|ψ|)ψ = 0,对于ψ: rx R→C,构造该方程的行波解。这些解的形式是ψ(t, x) = u(x1, x2, x3−Ct),对于一个小参数ε > 0,速度C阶为ε| log ε|。我们构建了两种不同类型的解决方案。对于第一类,当n≥2时,函数u有一个接近于n个螺旋并的零集(涡集),并且在这些螺旋附近u的阶为1。对于第二类,函数u在垂直轴e3附近有一个−1度的涡丝,在轴为e3的螺旋附近有n≥4个+1度的涡丝。在这两种情况下螺旋的距离都是1/(ε√)阶
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interacting helical traveling waves for the Gross–Pitaevskii equation
Abstract. We consider the 3D Gross-Pitaevskii equation i∂tψ +∆ψ + (1 − |ψ| )ψ = 0 for ψ : R× R → C and construct traveling waves solutions to this equation. These are solutions of the form ψ(t, x) = u(x1, x2, x3 −Ct) with a velocity C of order ε| log ε| for a small parameter ε > 0. We build two different types of solutions. For the first type, the functions u have a zero-set (vortex set) close to an union of n helices for n ≥ 2 and near these helices u has degree 1. For the second type, the functions u have a vortex filament of degree −1 near the vertical axis e3 and n ≥ 4 vortex filaments of degree +1 near helices whose axis is e3. In both cases the helices are at a distance of order 1/(ε √
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信