Fatemeh Fakhri, A. Habibi, M. Ghanbarzadeh, R. Ranjbar
{"title":"不活跃的青春期女性在有或没有血流限制的增强运动中骨骼生化标志物的反应","authors":"Fatemeh Fakhri, A. Habibi, M. Ghanbarzadeh, R. Ranjbar","doi":"10.32592/jbirjandunivmedsci.2021.28.1.102","DOIUrl":null,"url":null,"abstract":"Background and Aims: Physical activity and blood flow restriction (BFR) training can affect bone metabolism. This study aimed to investigate the effect of a plyometric exercise session with and without blood flow restriction on bone metabolism markers, such as bone alkaline phosphatase (BALP) and C-terminal telopeptide of type 1collagen (CTX), as the markers of bone formation and destruction, respectively, among inactive adolescent females.\nMaterials and Methods: This study was conducted using a quasi-experimental design with pretest-posttest. The participants (n=48) were randomly divided into four groups of high-intensity training (n=12), low-intensity training (n=12), low-intensity training+restricted blood flow (n=12), and control (n=12). The training protocol included 68 jumping movements. The intensity of the exercise was less than two and more than four times the body weight for low intensity groups with and without obstruction and the high-intensity group, respectively. Blood samples were taken before and immediately after the exercise to evaluate BALP and CTX. Data analysis was performed using dependent t-test and one-way ANOVA. A p-value of ≤0.05 was considered statistically significant.\nResults: A significant decrease was observed in CTX serum levels in high-intensity exercise group (P=0.04) and low-intensity exercise group with limited blood flow (P=0.03), compared to those in the pre-test. However, there was no significant within-group and intergroup changes in serum levels of bone formation marker (P≥0.05).\nConclusion: According to the results, a low-intensity plyometric exercise session with blood BFR can be as effective as high-intensity plyometric exercises in altering bone metabolism (reducing bone absorption marker).","PeriodicalId":31015,"journal":{"name":"Journal of Birjand University of Medical Sciences","volume":"16 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bone biochemical marker response to a plyometric exercise session with and without blood flow restriction in inactive adolescent females\",\"authors\":\"Fatemeh Fakhri, A. Habibi, M. Ghanbarzadeh, R. Ranjbar\",\"doi\":\"10.32592/jbirjandunivmedsci.2021.28.1.102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background and Aims: Physical activity and blood flow restriction (BFR) training can affect bone metabolism. This study aimed to investigate the effect of a plyometric exercise session with and without blood flow restriction on bone metabolism markers, such as bone alkaline phosphatase (BALP) and C-terminal telopeptide of type 1collagen (CTX), as the markers of bone formation and destruction, respectively, among inactive adolescent females.\\nMaterials and Methods: This study was conducted using a quasi-experimental design with pretest-posttest. The participants (n=48) were randomly divided into four groups of high-intensity training (n=12), low-intensity training (n=12), low-intensity training+restricted blood flow (n=12), and control (n=12). The training protocol included 68 jumping movements. The intensity of the exercise was less than two and more than four times the body weight for low intensity groups with and without obstruction and the high-intensity group, respectively. Blood samples were taken before and immediately after the exercise to evaluate BALP and CTX. Data analysis was performed using dependent t-test and one-way ANOVA. A p-value of ≤0.05 was considered statistically significant.\\nResults: A significant decrease was observed in CTX serum levels in high-intensity exercise group (P=0.04) and low-intensity exercise group with limited blood flow (P=0.03), compared to those in the pre-test. However, there was no significant within-group and intergroup changes in serum levels of bone formation marker (P≥0.05).\\nConclusion: According to the results, a low-intensity plyometric exercise session with blood BFR can be as effective as high-intensity plyometric exercises in altering bone metabolism (reducing bone absorption marker).\",\"PeriodicalId\":31015,\"journal\":{\"name\":\"Journal of Birjand University of Medical Sciences\",\"volume\":\"16 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Birjand University of Medical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32592/jbirjandunivmedsci.2021.28.1.102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Birjand University of Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32592/jbirjandunivmedsci.2021.28.1.102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bone biochemical marker response to a plyometric exercise session with and without blood flow restriction in inactive adolescent females
Background and Aims: Physical activity and blood flow restriction (BFR) training can affect bone metabolism. This study aimed to investigate the effect of a plyometric exercise session with and without blood flow restriction on bone metabolism markers, such as bone alkaline phosphatase (BALP) and C-terminal telopeptide of type 1collagen (CTX), as the markers of bone formation and destruction, respectively, among inactive adolescent females.
Materials and Methods: This study was conducted using a quasi-experimental design with pretest-posttest. The participants (n=48) were randomly divided into four groups of high-intensity training (n=12), low-intensity training (n=12), low-intensity training+restricted blood flow (n=12), and control (n=12). The training protocol included 68 jumping movements. The intensity of the exercise was less than two and more than four times the body weight for low intensity groups with and without obstruction and the high-intensity group, respectively. Blood samples were taken before and immediately after the exercise to evaluate BALP and CTX. Data analysis was performed using dependent t-test and one-way ANOVA. A p-value of ≤0.05 was considered statistically significant.
Results: A significant decrease was observed in CTX serum levels in high-intensity exercise group (P=0.04) and low-intensity exercise group with limited blood flow (P=0.03), compared to those in the pre-test. However, there was no significant within-group and intergroup changes in serum levels of bone formation marker (P≥0.05).
Conclusion: According to the results, a low-intensity plyometric exercise session with blood BFR can be as effective as high-intensity plyometric exercises in altering bone metabolism (reducing bone absorption marker).