{"title":"关于切片环面不变量取的值","authors":"P. Feller, Lukas Lewark, A. Lobb","doi":"10.1017/s0305004123000403","DOIUrl":null,"url":null,"abstract":"\n We study the space of slice torus invariants. In particular we characterise the set of values that slice torus invariants may take on a given knot in terms of the stable smooth slice genus. Our study reveals that the resolution of the local Thom conjecture implies the existence of slice torus invariants without having to appeal to any explicit construction from a knot homology theory.","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"33 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the values taken by slice torus invariants\",\"authors\":\"P. Feller, Lukas Lewark, A. Lobb\",\"doi\":\"10.1017/s0305004123000403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We study the space of slice torus invariants. In particular we characterise the set of values that slice torus invariants may take on a given knot in terms of the stable smooth slice genus. Our study reveals that the resolution of the local Thom conjecture implies the existence of slice torus invariants without having to appeal to any explicit construction from a knot homology theory.\",\"PeriodicalId\":18320,\"journal\":{\"name\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0305004123000403\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0305004123000403","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
We study the space of slice torus invariants. In particular we characterise the set of values that slice torus invariants may take on a given knot in terms of the stable smooth slice genus. Our study reveals that the resolution of the local Thom conjecture implies the existence of slice torus invariants without having to appeal to any explicit construction from a knot homology theory.
期刊介绍:
Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.