A. Rasmussen, G. Porter, Michael Conley, H. Madhyastha, Radhika Niranjan Mysore, A. Pucher, Amin Vahdat
{"title":"TritonSort:一个平衡和节能的大型分拣系统","authors":"A. Rasmussen, G. Porter, Michael Conley, H. Madhyastha, Radhika Niranjan Mysore, A. Pucher, Amin Vahdat","doi":"10.1145/2427631.2427634","DOIUrl":null,"url":null,"abstract":"We present TritonSort, a highly efficient, scalable sorting system. It is designed to process large datasets, and has been evaluated against as much as 100TB of input data spread across 832 disks in 52 nodes at a rate of 0.938TB/min. When evaluated against the annual Indy GraySort sorting benchmark, TritonSort is 66% better in absolute performance and has over six times the per-node throughput of the previous record holder. When evaluated against the 100TB Indy JouleSort benchmark, TritonSort sorted 9703 records/Joule. In this article, we describe the hardware and software architecture necessary to operate TritonSort at this level of efficiency. Through careful management of system resources to ensure cross-resource balance, we are able to sort data at approximately 80% of the disks’ aggregate sequential write speed.\n We believe the work holds a number of lessons for balanced system design and for scale-out architectures in general. While many interesting systems are able to scale linearly with additional servers, per-server performance can lag behind per-server capacity by more than an order of magnitude. Bridging the gap between high scalability and high performance would enable either significantly less expensive systems that are able to do the same work or provide the ability to address significantly larger problem sets with the same infrastructure.","PeriodicalId":50918,"journal":{"name":"ACM Transactions on Computer Systems","volume":"10 1","pages":"3"},"PeriodicalIF":2.0000,"publicationDate":"2013-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/2427631.2427634","citationCount":"22","resultStr":"{\"title\":\"TritonSort: A Balanced and Energy-Efficient Large-Scale Sorting System\",\"authors\":\"A. Rasmussen, G. Porter, Michael Conley, H. Madhyastha, Radhika Niranjan Mysore, A. Pucher, Amin Vahdat\",\"doi\":\"10.1145/2427631.2427634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present TritonSort, a highly efficient, scalable sorting system. It is designed to process large datasets, and has been evaluated against as much as 100TB of input data spread across 832 disks in 52 nodes at a rate of 0.938TB/min. When evaluated against the annual Indy GraySort sorting benchmark, TritonSort is 66% better in absolute performance and has over six times the per-node throughput of the previous record holder. When evaluated against the 100TB Indy JouleSort benchmark, TritonSort sorted 9703 records/Joule. In this article, we describe the hardware and software architecture necessary to operate TritonSort at this level of efficiency. Through careful management of system resources to ensure cross-resource balance, we are able to sort data at approximately 80% of the disks’ aggregate sequential write speed.\\n We believe the work holds a number of lessons for balanced system design and for scale-out architectures in general. While many interesting systems are able to scale linearly with additional servers, per-server performance can lag behind per-server capacity by more than an order of magnitude. Bridging the gap between high scalability and high performance would enable either significantly less expensive systems that are able to do the same work or provide the ability to address significantly larger problem sets with the same infrastructure.\",\"PeriodicalId\":50918,\"journal\":{\"name\":\"ACM Transactions on Computer Systems\",\"volume\":\"10 1\",\"pages\":\"3\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2013-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/2427631.2427634\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computer Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/2427631.2427634\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computer Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/2427631.2427634","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
TritonSort: A Balanced and Energy-Efficient Large-Scale Sorting System
We present TritonSort, a highly efficient, scalable sorting system. It is designed to process large datasets, and has been evaluated against as much as 100TB of input data spread across 832 disks in 52 nodes at a rate of 0.938TB/min. When evaluated against the annual Indy GraySort sorting benchmark, TritonSort is 66% better in absolute performance and has over six times the per-node throughput of the previous record holder. When evaluated against the 100TB Indy JouleSort benchmark, TritonSort sorted 9703 records/Joule. In this article, we describe the hardware and software architecture necessary to operate TritonSort at this level of efficiency. Through careful management of system resources to ensure cross-resource balance, we are able to sort data at approximately 80% of the disks’ aggregate sequential write speed.
We believe the work holds a number of lessons for balanced system design and for scale-out architectures in general. While many interesting systems are able to scale linearly with additional servers, per-server performance can lag behind per-server capacity by more than an order of magnitude. Bridging the gap between high scalability and high performance would enable either significantly less expensive systems that are able to do the same work or provide the ability to address significantly larger problem sets with the same infrastructure.
期刊介绍:
ACM Transactions on Computer Systems (TOCS) presents research and development results on the design, implementation, analysis, evaluation, and use of computer systems and systems software. The term "computer systems" is interpreted broadly and includes operating systems, systems architecture and hardware, distributed systems, optimizing compilers, and the interaction between systems and computer networks. Articles appearing in TOCS will tend either to present new techniques and concepts, or to report on experiences and experiments with actual systems. Insights useful to system designers, builders, and users will be emphasized.
TOCS publishes research and technical papers, both short and long. It includes technical correspondence to permit commentary on technical topics and on previously published papers.