结核分枝杆菌PE_PGRS基因和DNA修复、复制和重组基因的变异性评估

Q4 Medicine
V. Slizen, L. Surkova, G. L. Gurevich
{"title":"结核分枝杆菌PE_PGRS基因和DNA修复、复制和重组基因的变异性评估","authors":"V. Slizen, L. Surkova, G. L. Gurevich","doi":"10.29235/1814-6023-2023-20-1-42-57","DOIUrl":null,"url":null,"abstract":"The variability assessment of PE/PPE genes, as well as of DNA repair, replication, and recombination system genes may drive the concept of mechanisms of Mycobacterium tuberculosis evolution and adaptation.The aim is to study the variability of PE_PGRS genes, 3R-system genes (DNA repair, recombination, and replication) to assess the mechanisms of evolutionary changes in M. tuberculosis.Whole genome sequencing of M. tuberculosis 11502 (the Beijing genotype subtype B0/W148 cluster 100-32), M. tuberculosis 5005 (the Beijing genotype subtype B0/W148), M. tuberculosis 4860 (the LAM genotype) strains was performed. They were isolated from patients with newly diagnosed pulmonary tuberculosis. Genomes were uploaded to the GanBank, NCBI: M. tuberculosis 11502 – access code: CP070338.1, M. tuberculosis 5005 – access code: CP053092.1, M. tuberculosis 4860 – access code: CP049108.1. A reference genome (M. tuberculosis H37Rv; NC_000962.3) was used for genetic analysis. In the M. tuberculosis 11502 genome, 44.4 ± 6.8 % of genes (24 genes out of 54) were revealed in the mutations related to the 3R system, while in M. tuberculosis 4860– 29.6 ± 6.2 % (16 genes out of 54). In the 3R system genes, a slight shift of mutations towards replacement by adenine and thymine was revealed, while the entire genome of M. tuberculosis 11502 (compared to M. tuberculosis H37Rv) demonstrated mutations, resulting in a slight accumulation of G + C. Mutations in the 3R system genes may lead to the suboptimal activity of proteins responsible for the DNA-repair, resulting in the upsurge of mutation frequency and promoting adaptive evolution. PE_PGRS genes in the genome of M. tuberculosis 11502, 4860, and 5005 exhibited a high variability and their variability diverged among different members of this gene family. A high level of tetranucleotides CGGC was found in the majority of PE_PGRS family genes, where their proportion varied from 2.11 to 8.42 %, while an average proportion of CGGC in the M. tuberculosis genome was 1.62 %. Some genes in the M. tuberculosis genome were detected to carry no tetranucleotides CGGC (Rv0011, Rv0100, Rv0460, Rv0616A, Rv0691A, Rv0722, Rv0863, Rv0909, Rv1038c, Rv1197, Rv2347c, Rv2452c, and Rv3330c). The DNA conformation analysis at the mutation sites in the genes, associated with resistance to anti-tuberculosis drugs, showed that the secondary DNA structures were mainly formed by nucleotides CGGC, GCGC, GGG, GGGG, CTGC, and mutations occurred, predominantly, at the sites of forming secondary DNA structures (hairpins) where the redistribution of energy and charges can influence the accuracy of replication and result in replication errors and a mutation event. A number of additional factors can influence the probability of a mutation event. These are the factors that can neutralize the energy changes in the DNA secondary structures, and can affect the accuracy of DNA-repair and replication (mutations in the gyrA gene, in the 3R-system genes).","PeriodicalId":20584,"journal":{"name":"Proceedings of the National Academy of Sciences of Belarus, Medical series","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variability assessment of PE_PGRS genes and DNA repair, replication, and recombination genes in Mycobacterium tuberculosis\",\"authors\":\"V. Slizen, L. Surkova, G. L. Gurevich\",\"doi\":\"10.29235/1814-6023-2023-20-1-42-57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The variability assessment of PE/PPE genes, as well as of DNA repair, replication, and recombination system genes may drive the concept of mechanisms of Mycobacterium tuberculosis evolution and adaptation.The aim is to study the variability of PE_PGRS genes, 3R-system genes (DNA repair, recombination, and replication) to assess the mechanisms of evolutionary changes in M. tuberculosis.Whole genome sequencing of M. tuberculosis 11502 (the Beijing genotype subtype B0/W148 cluster 100-32), M. tuberculosis 5005 (the Beijing genotype subtype B0/W148), M. tuberculosis 4860 (the LAM genotype) strains was performed. They were isolated from patients with newly diagnosed pulmonary tuberculosis. Genomes were uploaded to the GanBank, NCBI: M. tuberculosis 11502 – access code: CP070338.1, M. tuberculosis 5005 – access code: CP053092.1, M. tuberculosis 4860 – access code: CP049108.1. A reference genome (M. tuberculosis H37Rv; NC_000962.3) was used for genetic analysis. In the M. tuberculosis 11502 genome, 44.4 ± 6.8 % of genes (24 genes out of 54) were revealed in the mutations related to the 3R system, while in M. tuberculosis 4860– 29.6 ± 6.2 % (16 genes out of 54). In the 3R system genes, a slight shift of mutations towards replacement by adenine and thymine was revealed, while the entire genome of M. tuberculosis 11502 (compared to M. tuberculosis H37Rv) demonstrated mutations, resulting in a slight accumulation of G + C. Mutations in the 3R system genes may lead to the suboptimal activity of proteins responsible for the DNA-repair, resulting in the upsurge of mutation frequency and promoting adaptive evolution. PE_PGRS genes in the genome of M. tuberculosis 11502, 4860, and 5005 exhibited a high variability and their variability diverged among different members of this gene family. A high level of tetranucleotides CGGC was found in the majority of PE_PGRS family genes, where their proportion varied from 2.11 to 8.42 %, while an average proportion of CGGC in the M. tuberculosis genome was 1.62 %. Some genes in the M. tuberculosis genome were detected to carry no tetranucleotides CGGC (Rv0011, Rv0100, Rv0460, Rv0616A, Rv0691A, Rv0722, Rv0863, Rv0909, Rv1038c, Rv1197, Rv2347c, Rv2452c, and Rv3330c). The DNA conformation analysis at the mutation sites in the genes, associated with resistance to anti-tuberculosis drugs, showed that the secondary DNA structures were mainly formed by nucleotides CGGC, GCGC, GGG, GGGG, CTGC, and mutations occurred, predominantly, at the sites of forming secondary DNA structures (hairpins) where the redistribution of energy and charges can influence the accuracy of replication and result in replication errors and a mutation event. A number of additional factors can influence the probability of a mutation event. These are the factors that can neutralize the energy changes in the DNA secondary structures, and can affect the accuracy of DNA-repair and replication (mutations in the gyrA gene, in the 3R-system genes).\",\"PeriodicalId\":20584,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of Belarus, Medical series\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of Belarus, Medical series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29235/1814-6023-2023-20-1-42-57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of Belarus, Medical series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29235/1814-6023-2023-20-1-42-57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

PE/PPE基因以及DNA修复、复制和重组系统基因的可变性评估可能会推动结核分枝杆菌进化和适应机制的概念。目的是研究PE_PGRS基因、3r系统基因(DNA修复、重组和复制)的变异性,以评估结核分枝杆菌进化变化的机制。对结核分枝杆菌11502(北京基因型亚型B0/W148聚群100-32)、5005(北京基因型B0/W148亚型)、4860 (LAM基因型)进行全基因组测序。它们是从新诊断的肺结核患者中分离出来的。基因组上传至GanBank, NCBI:结核分枝杆菌11502 -接入代码:CP070338.1,结核分枝杆菌5005 -接入代码:CP053092.1,结核分枝杆菌4860 -接入代码:CP049108.1。参考基因组(结核分枝杆菌H37Rv;采用NC_000962.3)进行遗传分析。结核分枝杆菌11502基因组中与3R系统相关的突变占44.44±6.8%(54个基因中有24个基因),结核分枝杆菌4860基因组中与3R系统相关的突变占29.6±6.2%(54个基因中有16个基因)。在3R系统基因中,突变向腺嘌呤和胸腺嘧啶的替代方向轻微转移,而结核分枝杆菌11502的整个基因组(与结核分枝杆菌H37Rv相比)显示突变,导致G + c的轻微积累,3R系统基因的突变可能导致负责dna修复的蛋白质活性次优,导致突变频率上升,促进适应性进化。结核分枝杆菌11502、4860和5005基因组中的PE_PGRS基因表现出较高的变异性,其变异性在该基因家族的不同成员之间存在差异。大多数PE_PGRS家族基因中均含有高水平的四核苷酸CGGC,其比例在2.11% ~ 8.42%之间,而结核分枝杆菌基因组中CGGC的平均比例为1.62%。在结核分枝杆菌基因组中检测到部分基因不携带CGGC四核苷酸(Rv0011、Rv0100、Rv0460、Rv0616A、Rv0691A、Rv0722、Rv0863、Rv0909、Rv1038c、Rv1197、Rv2347c、Rv2452c和Rv3330c)。对抗结核药物耐药相关基因突变位点的DNA构象分析表明,二级DNA结构主要由核苷酸CGGC、GCGC、GGG、GGGG、CTGC形成,突变主要发生在二级DNA结构形成位点(发夹),能量和电荷的重新分配会影响复制的准确性,导致复制错误和突变事件。许多其他因素可以影响突变事件的概率。这些因素可以中和DNA二级结构中的能量变化,并可以影响DNA修复和复制的准确性(gyrA基因突变,3r系统基因突变)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variability assessment of PE_PGRS genes and DNA repair, replication, and recombination genes in Mycobacterium tuberculosis
The variability assessment of PE/PPE genes, as well as of DNA repair, replication, and recombination system genes may drive the concept of mechanisms of Mycobacterium tuberculosis evolution and adaptation.The aim is to study the variability of PE_PGRS genes, 3R-system genes (DNA repair, recombination, and replication) to assess the mechanisms of evolutionary changes in M. tuberculosis.Whole genome sequencing of M. tuberculosis 11502 (the Beijing genotype subtype B0/W148 cluster 100-32), M. tuberculosis 5005 (the Beijing genotype subtype B0/W148), M. tuberculosis 4860 (the LAM genotype) strains was performed. They were isolated from patients with newly diagnosed pulmonary tuberculosis. Genomes were uploaded to the GanBank, NCBI: M. tuberculosis 11502 – access code: CP070338.1, M. tuberculosis 5005 – access code: CP053092.1, M. tuberculosis 4860 – access code: CP049108.1. A reference genome (M. tuberculosis H37Rv; NC_000962.3) was used for genetic analysis. In the M. tuberculosis 11502 genome, 44.4 ± 6.8 % of genes (24 genes out of 54) were revealed in the mutations related to the 3R system, while in M. tuberculosis 4860– 29.6 ± 6.2 % (16 genes out of 54). In the 3R system genes, a slight shift of mutations towards replacement by adenine and thymine was revealed, while the entire genome of M. tuberculosis 11502 (compared to M. tuberculosis H37Rv) demonstrated mutations, resulting in a slight accumulation of G + C. Mutations in the 3R system genes may lead to the suboptimal activity of proteins responsible for the DNA-repair, resulting in the upsurge of mutation frequency and promoting adaptive evolution. PE_PGRS genes in the genome of M. tuberculosis 11502, 4860, and 5005 exhibited a high variability and their variability diverged among different members of this gene family. A high level of tetranucleotides CGGC was found in the majority of PE_PGRS family genes, where their proportion varied from 2.11 to 8.42 %, while an average proportion of CGGC in the M. tuberculosis genome was 1.62 %. Some genes in the M. tuberculosis genome were detected to carry no tetranucleotides CGGC (Rv0011, Rv0100, Rv0460, Rv0616A, Rv0691A, Rv0722, Rv0863, Rv0909, Rv1038c, Rv1197, Rv2347c, Rv2452c, and Rv3330c). The DNA conformation analysis at the mutation sites in the genes, associated with resistance to anti-tuberculosis drugs, showed that the secondary DNA structures were mainly formed by nucleotides CGGC, GCGC, GGG, GGGG, CTGC, and mutations occurred, predominantly, at the sites of forming secondary DNA structures (hairpins) where the redistribution of energy and charges can influence the accuracy of replication and result in replication errors and a mutation event. A number of additional factors can influence the probability of a mutation event. These are the factors that can neutralize the energy changes in the DNA secondary structures, and can affect the accuracy of DNA-repair and replication (mutations in the gyrA gene, in the 3R-system genes).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
35
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信