最大Mathieu群的若干子群的模构造

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Lea Beneish
{"title":"最大Mathieu群的若干子群的模构造","authors":"Lea Beneish","doi":"10.4310/atmp.2021.v25.n7.a2","DOIUrl":null,"url":null,"abstract":"For certain subgroups of $M_{24}$, we give vertex operator algebraic module constructions whose associated trace functions are meromorphic Jacobi forms. These meromorphic Jacobi forms are canonically associated to the mock modular forms of Mathieu moonshine. The construction is related to the Conway moonshine module and employs a technique introduced by Anagiannis--Cheng--Harrison. With this construction we are able to give concrete vertex algebraic realizations of certain cuspidal Hecke eigenforms of weight two. In particular, we give explicit realizations of trace functions whose integralities are equivalent to divisibility conditions on the number of $\\mathbb{F}_p$ points on the Jacobians of modular curves.","PeriodicalId":50848,"journal":{"name":"Advances in Theoretical and Mathematical Physics","volume":"32 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Module constructions for certain subgroups of the largest Mathieu group\",\"authors\":\"Lea Beneish\",\"doi\":\"10.4310/atmp.2021.v25.n7.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For certain subgroups of $M_{24}$, we give vertex operator algebraic module constructions whose associated trace functions are meromorphic Jacobi forms. These meromorphic Jacobi forms are canonically associated to the mock modular forms of Mathieu moonshine. The construction is related to the Conway moonshine module and employs a technique introduced by Anagiannis--Cheng--Harrison. With this construction we are able to give concrete vertex algebraic realizations of certain cuspidal Hecke eigenforms of weight two. In particular, we give explicit realizations of trace functions whose integralities are equivalent to divisibility conditions on the number of $\\\\mathbb{F}_p$ points on the Jacobians of modular curves.\",\"PeriodicalId\":50848,\"journal\":{\"name\":\"Advances in Theoretical and Mathematical Physics\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.4310/atmp.2021.v25.n7.a2\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.4310/atmp.2021.v25.n7.a2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 2

摘要

对于$M_{24}$的某些子群,给出了其相关迹函数为亚纯Jacobi形式的顶点算子代数模构造。这些亚纯雅可比形式通常与Mathieu moonshine的模拟模形式相关联。该结构与康威月光模块相关,并采用了Anagiannis- Cheng- Harrison介绍的技术。利用这种构造,我们能够给出某些权值为2的倒刀Hecke特征形式的具体顶点代数实现。特别地,我们给出了迹函数的显式实现,其完整性等价于模曲线雅可比矩阵上$\mathbb{F}_p$点个数的可整除条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Module constructions for certain subgroups of the largest Mathieu group
For certain subgroups of $M_{24}$, we give vertex operator algebraic module constructions whose associated trace functions are meromorphic Jacobi forms. These meromorphic Jacobi forms are canonically associated to the mock modular forms of Mathieu moonshine. The construction is related to the Conway moonshine module and employs a technique introduced by Anagiannis--Cheng--Harrison. With this construction we are able to give concrete vertex algebraic realizations of certain cuspidal Hecke eigenforms of weight two. In particular, we give explicit realizations of trace functions whose integralities are equivalent to divisibility conditions on the number of $\mathbb{F}_p$ points on the Jacobians of modular curves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Theoretical and Mathematical Physics
Advances in Theoretical and Mathematical Physics 物理-物理:粒子与场物理
CiteScore
2.20
自引率
6.70%
发文量
0
审稿时长
>12 weeks
期刊介绍: Advances in Theoretical and Mathematical Physics is a bimonthly publication of the International Press, publishing papers on all areas in which theoretical physics and mathematics interact with each other.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信