非高斯信号检测从多个传感器使用自举

H. Ong, A. Zoubir
{"title":"非高斯信号检测从多个传感器使用自举","authors":"H. Ong, A. Zoubir","doi":"10.1109/ICICS.1997.647116","DOIUrl":null,"url":null,"abstract":"Existing tests based on the cross bispectrum to detect stationary non-Gaussian signals use two sensors or channels of data. We propose to extend such tests to the case of multiple sensors. Our approach uses Bonferroni tests of multiple hypotheses. A multi-sensor bootstrap method is presented and compared through simulations with two other multi-sensor methods. Simulation results show that the bootstrap method is better able to keep the level of significance and have high correct detection (as the SNR increases) than the others.","PeriodicalId":71361,"journal":{"name":"信息通信技术","volume":"10 1","pages":"340-344 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"1997-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ICICS.1997.647116","citationCount":"0","resultStr":"{\"title\":\"Non-Gaussian signal detection from multiple sensors using the bootstrap\",\"authors\":\"H. Ong, A. Zoubir\",\"doi\":\"10.1109/ICICS.1997.647116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing tests based on the cross bispectrum to detect stationary non-Gaussian signals use two sensors or channels of data. We propose to extend such tests to the case of multiple sensors. Our approach uses Bonferroni tests of multiple hypotheses. A multi-sensor bootstrap method is presented and compared through simulations with two other multi-sensor methods. Simulation results show that the bootstrap method is better able to keep the level of significance and have high correct detection (as the SNR increases) than the others.\",\"PeriodicalId\":71361,\"journal\":{\"name\":\"信息通信技术\",\"volume\":\"10 1\",\"pages\":\"340-344 vol.1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/ICICS.1997.647116\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"信息通信技术\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICS.1997.647116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"信息通信技术","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ICICS.1997.647116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现有的基于交叉双谱检测平稳非高斯信号的测试使用两个传感器或数据通道。我们建议将这种测试扩展到多个传感器的情况。我们的方法使用了多个假设的Bonferroni检验。提出了一种多传感器自举方法,并与其他两种多传感器自举方法进行了仿真比较。仿真结果表明,自举法能够较好地保持显著性水平,并具有较高的检测正确率(随着信噪比的增加)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-Gaussian signal detection from multiple sensors using the bootstrap
Existing tests based on the cross bispectrum to detect stationary non-Gaussian signals use two sensors or channels of data. We propose to extend such tests to the case of multiple sensors. Our approach uses Bonferroni tests of multiple hypotheses. A multi-sensor bootstrap method is presented and compared through simulations with two other multi-sensor methods. Simulation results show that the bootstrap method is better able to keep the level of significance and have high correct detection (as the SNR increases) than the others.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
1369
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信