{"title":"5马赫数高超声速流的SU2开源代码评估","authors":"Jia-Ming Yeap, Z. Rana, L. Könözsy, K. Jenkins","doi":"10.32973/jcam.2022.004","DOIUrl":null,"url":null,"abstract":"This paper presents the evaluation of the Stanford University Unstructured (SU2) open-source computational software package for a high Mach number 5 flow. The test case selected is an impinging shock wave turbulent boundary layer interaction (SWTBLI) on a flat plate where the experimental data of Sch¨ulein et al. [27] is used for validation purposes. Two turbulence models, the Spalart–Allmaras (SA) and the k-ω Shear Stress Transport (SST) within the SU2 code are evaluated in this study. Flow parameters, such as skin friction, wall pressure distribution and boundary layer profiles are compared with experimental values. The results demonstrate the performance of the SU2 code at a high Mach number flow and highlight its limitations in predicting fluid flow physics. At higher shock generator angles, the discrepancy between experimental and CFD data is more significant. Within the interaction and flow separation zones, a smaller separation bubble and delayed separation are predicted by the SA model while the k-ω SST model predicts early separation. Both models are able to predict wall pressure distribution correctly within the experimental values. However, discrepancies were observed in the prediction of skin friction due to the inability of the models to capture the boundary layer recovery after shock impingement.","PeriodicalId":47168,"journal":{"name":"Journal of Applied and Computational Mechanics","volume":"20 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of the SU2 Open-Source Code for a Hypersonic Flow at Mach Number 5\",\"authors\":\"Jia-Ming Yeap, Z. Rana, L. Könözsy, K. Jenkins\",\"doi\":\"10.32973/jcam.2022.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the evaluation of the Stanford University Unstructured (SU2) open-source computational software package for a high Mach number 5 flow. The test case selected is an impinging shock wave turbulent boundary layer interaction (SWTBLI) on a flat plate where the experimental data of Sch¨ulein et al. [27] is used for validation purposes. Two turbulence models, the Spalart–Allmaras (SA) and the k-ω Shear Stress Transport (SST) within the SU2 code are evaluated in this study. Flow parameters, such as skin friction, wall pressure distribution and boundary layer profiles are compared with experimental values. The results demonstrate the performance of the SU2 code at a high Mach number flow and highlight its limitations in predicting fluid flow physics. At higher shock generator angles, the discrepancy between experimental and CFD data is more significant. Within the interaction and flow separation zones, a smaller separation bubble and delayed separation are predicted by the SA model while the k-ω SST model predicts early separation. Both models are able to predict wall pressure distribution correctly within the experimental values. However, discrepancies were observed in the prediction of skin friction due to the inability of the models to capture the boundary layer recovery after shock impingement.\",\"PeriodicalId\":47168,\"journal\":{\"name\":\"Journal of Applied and Computational Mechanics\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied and Computational Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32973/jcam.2022.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32973/jcam.2022.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Evaluation of the SU2 Open-Source Code for a Hypersonic Flow at Mach Number 5
This paper presents the evaluation of the Stanford University Unstructured (SU2) open-source computational software package for a high Mach number 5 flow. The test case selected is an impinging shock wave turbulent boundary layer interaction (SWTBLI) on a flat plate where the experimental data of Sch¨ulein et al. [27] is used for validation purposes. Two turbulence models, the Spalart–Allmaras (SA) and the k-ω Shear Stress Transport (SST) within the SU2 code are evaluated in this study. Flow parameters, such as skin friction, wall pressure distribution and boundary layer profiles are compared with experimental values. The results demonstrate the performance of the SU2 code at a high Mach number flow and highlight its limitations in predicting fluid flow physics. At higher shock generator angles, the discrepancy between experimental and CFD data is more significant. Within the interaction and flow separation zones, a smaller separation bubble and delayed separation are predicted by the SA model while the k-ω SST model predicts early separation. Both models are able to predict wall pressure distribution correctly within the experimental values. However, discrepancies were observed in the prediction of skin friction due to the inability of the models to capture the boundary layer recovery after shock impingement.
期刊介绍:
The Journal of Applied and Computational Mechanics aims to provide a medium for dissemination of innovative and consequential papers on mathematical and computational methods in theoretical as well as applied mechanics. Manuscripts submitted to the journal undergo a blind peer reviewing procedure conducted by the editorial board. The Journal of Applied and Computational Mechanics devoted to the all fields of solid and fluid mechanics. The journal also welcomes papers that are related to the recent technological advances such as biomechanics, electro-mechanics, advanced materials and micor/nano-mechanics. The scope of the journal includes, but is not limited to, the following topic areas: -Theoretical and experimental mechanics- Dynamic systems & control- Nonlinear dynamics and chaos- Boundary layer theory- Turbulence and hydrodynamic stability- Multiphase flows- Heat and mass transfer- Micro/Nano-mechanics- Structural optimization- Smart materials and applications- Composite materials- Hydro- and aerodynamics- Fluid-structure interaction- Gas dynamics