{"title":"围产期窒息后肺损伤新生儿血清外泌体的蛋白质组学分析","authors":"Haiying Li, Chuangli Hao, Feifei Shen, Ying Li, W. Gu, Xingmei Yu, Youjia Wu, Gui-hai Suo, Yu-qin Zheng","doi":"10.2174/1570164620666230714115822","DOIUrl":null,"url":null,"abstract":"\n\nNeonate lung injury is a common phenomenon after perinatal asphyxia\n\n\n\nTo evaluate proteomic profiles of exosomes isolated from lung injury offspring serum after perinatal asphyxia.\n\n\n\nSerum samples were collected at 12 h, 24 h, and 72 h after birth in neonates with perinatal asphyxia-induced lung injury. Exosomes were isolated, and the concentration and size distribution were assessed. The exosome surface markers CD9, CD63, CD81, HSP70, and TSG101 were detected by Western blot. The exosome proteins were evaluated by quantitative proteomics using a tandem mass tag (TMT). All the identified proteins were submitted to the Weighted Gene Co-Expression Network Analysis (WGCNA), GO function, and KEGG pathway analysis. A protein-protein interaction network (PPI) was utilized to identify hub proteins with the Cytohubba plugin of Cytoscape.\n\n\n\nThe exosomes were round or oval vesicular structures at a diameter range of 100-200 nm, and the size distribution was standard and consistent. Exosome surface markers CD9, CD63, CD81, HSP70, and TSG101 were detected. 444 out of 450 proteins were mapped with gene names. A brown module containing 71 proteins was highly linked with the 12 h phenotype and was predominantly concentrated in lipoprotein and complement activation. The top 10 proteins, APOA1, APOB, APOE, LPA, APOA2, CP, C3, FGB, FGA, and TF, were determined as hub proteins.\n\n\n\nThe present study demonstrates comprehensive information for understanding molecular changes of lung injury following perinatal asphyxia, which provides a reliable basis for screening potential biomarkers and therapeutic targets in the clinic.\n","PeriodicalId":50601,"journal":{"name":"Current Proteomics","volume":"23 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proteome Profiling of Serum Exosomes from Newborns with Lung Injury after Perinatal Asphyxia\",\"authors\":\"Haiying Li, Chuangli Hao, Feifei Shen, Ying Li, W. Gu, Xingmei Yu, Youjia Wu, Gui-hai Suo, Yu-qin Zheng\",\"doi\":\"10.2174/1570164620666230714115822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nNeonate lung injury is a common phenomenon after perinatal asphyxia\\n\\n\\n\\nTo evaluate proteomic profiles of exosomes isolated from lung injury offspring serum after perinatal asphyxia.\\n\\n\\n\\nSerum samples were collected at 12 h, 24 h, and 72 h after birth in neonates with perinatal asphyxia-induced lung injury. Exosomes were isolated, and the concentration and size distribution were assessed. The exosome surface markers CD9, CD63, CD81, HSP70, and TSG101 were detected by Western blot. The exosome proteins were evaluated by quantitative proteomics using a tandem mass tag (TMT). All the identified proteins were submitted to the Weighted Gene Co-Expression Network Analysis (WGCNA), GO function, and KEGG pathway analysis. A protein-protein interaction network (PPI) was utilized to identify hub proteins with the Cytohubba plugin of Cytoscape.\\n\\n\\n\\nThe exosomes were round or oval vesicular structures at a diameter range of 100-200 nm, and the size distribution was standard and consistent. Exosome surface markers CD9, CD63, CD81, HSP70, and TSG101 were detected. 444 out of 450 proteins were mapped with gene names. A brown module containing 71 proteins was highly linked with the 12 h phenotype and was predominantly concentrated in lipoprotein and complement activation. The top 10 proteins, APOA1, APOB, APOE, LPA, APOA2, CP, C3, FGB, FGA, and TF, were determined as hub proteins.\\n\\n\\n\\nThe present study demonstrates comprehensive information for understanding molecular changes of lung injury following perinatal asphyxia, which provides a reliable basis for screening potential biomarkers and therapeutic targets in the clinic.\\n\",\"PeriodicalId\":50601,\"journal\":{\"name\":\"Current Proteomics\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/1570164620666230714115822\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/1570164620666230714115822","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Proteome Profiling of Serum Exosomes from Newborns with Lung Injury after Perinatal Asphyxia
Neonate lung injury is a common phenomenon after perinatal asphyxia
To evaluate proteomic profiles of exosomes isolated from lung injury offspring serum after perinatal asphyxia.
Serum samples were collected at 12 h, 24 h, and 72 h after birth in neonates with perinatal asphyxia-induced lung injury. Exosomes were isolated, and the concentration and size distribution were assessed. The exosome surface markers CD9, CD63, CD81, HSP70, and TSG101 were detected by Western blot. The exosome proteins were evaluated by quantitative proteomics using a tandem mass tag (TMT). All the identified proteins were submitted to the Weighted Gene Co-Expression Network Analysis (WGCNA), GO function, and KEGG pathway analysis. A protein-protein interaction network (PPI) was utilized to identify hub proteins with the Cytohubba plugin of Cytoscape.
The exosomes were round or oval vesicular structures at a diameter range of 100-200 nm, and the size distribution was standard and consistent. Exosome surface markers CD9, CD63, CD81, HSP70, and TSG101 were detected. 444 out of 450 proteins were mapped with gene names. A brown module containing 71 proteins was highly linked with the 12 h phenotype and was predominantly concentrated in lipoprotein and complement activation. The top 10 proteins, APOA1, APOB, APOE, LPA, APOA2, CP, C3, FGB, FGA, and TF, were determined as hub proteins.
The present study demonstrates comprehensive information for understanding molecular changes of lung injury following perinatal asphyxia, which provides a reliable basis for screening potential biomarkers and therapeutic targets in the clinic.
Current ProteomicsBIOCHEMICAL RESEARCH METHODS-BIOCHEMISTRY & MOLECULAR BIOLOGY
CiteScore
1.60
自引率
0.00%
发文量
25
审稿时长
>0 weeks
期刊介绍:
Research in the emerging field of proteomics is growing at an extremely rapid rate. The principal aim of Current Proteomics is to publish well-timed in-depth/mini review articles in this fast-expanding area on topics relevant and significant to the development of proteomics. Current Proteomics is an essential journal for everyone involved in proteomics and related fields in both academia and industry.
Current Proteomics publishes in-depth/mini review articles in all aspects of the fast-expanding field of proteomics. All areas of proteomics are covered together with the methodology, software, databases, technological advances and applications of proteomics, including functional proteomics. Diverse technologies covered include but are not limited to:
Protein separation and characterization techniques
2-D gel electrophoresis and image analysis
Techniques for protein expression profiling including mass spectrometry-based methods and algorithms for correlative database searching
Determination of co-translational and post- translational modification of proteins
Protein/peptide microarrays
Biomolecular interaction analysis
Analysis of protein complexes
Yeast two-hybrid projects
Protein-protein interaction (protein interactome) pathways and cell signaling networks
Systems biology
Proteome informatics (bioinformatics)
Knowledge integration and management tools
High-throughput protein structural studies (using mass spectrometry, nuclear magnetic resonance and X-ray crystallography)
High-throughput computational methods for protein 3-D structure as well as function determination
Robotics, nanotechnology, and microfluidics.