积流形上的拉普拉斯特征函数与阻尼波动方程

N. Burq, C. Zuily
{"title":"积流形上的拉普拉斯特征函数与阻尼波动方程","authors":"N. Burq, C. Zuily","doi":"10.1093/AMRX/ABV005","DOIUrl":null,"url":null,"abstract":"- The purpose of this article is to study possible concentrations of eigenfunc-tions of Laplace operators (or more generally quasi-modes) on product manifolds. We show that the approach of the first author and Zworski [10, 11] applies (modulo rescalling) and deduce new stabilization results for weakly damped wave equations which extend to product manifolds previous results by Leautaud-Lerner [12] obtained for products of tori.","PeriodicalId":89656,"journal":{"name":"Applied mathematics research express : AMRX","volume":"19 1","pages":"296-310"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/AMRX/ABV005","citationCount":"11","resultStr":"{\"title\":\"Laplace Eigenfunctions and Damped Wave Equation on Product Manifolds\",\"authors\":\"N. Burq, C. Zuily\",\"doi\":\"10.1093/AMRX/ABV005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"- The purpose of this article is to study possible concentrations of eigenfunc-tions of Laplace operators (or more generally quasi-modes) on product manifolds. We show that the approach of the first author and Zworski [10, 11] applies (modulo rescalling) and deduce new stabilization results for weakly damped wave equations which extend to product manifolds previous results by Leautaud-Lerner [12] obtained for products of tori.\",\"PeriodicalId\":89656,\"journal\":{\"name\":\"Applied mathematics research express : AMRX\",\"volume\":\"19 1\",\"pages\":\"296-310\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/AMRX/ABV005\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied mathematics research express : AMRX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/AMRX/ABV005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied mathematics research express : AMRX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/AMRX/ABV005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

-本文的目的是研究拉普拉斯算子(或更一般的拟模)在积流形上的特征函数的可能集中。我们证明了第一作者和Zworski[10,11]的方法适用于(模还原)并推导出弱阻尼波动方程的新稳定结果,这些结果扩展到积流形,这是由Leautaud-Lerner[12]在环面积上得到的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Laplace Eigenfunctions and Damped Wave Equation on Product Manifolds
- The purpose of this article is to study possible concentrations of eigenfunc-tions of Laplace operators (or more generally quasi-modes) on product manifolds. We show that the approach of the first author and Zworski [10, 11] applies (modulo rescalling) and deduce new stabilization results for weakly damped wave equations which extend to product manifolds previous results by Leautaud-Lerner [12] obtained for products of tori.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信