D. Eppstein, Danny Holten, M. Löffler, M. Nöllenburg, B. Speckmann, Kevin Verbeek
{"title":"严格合流图","authors":"D. Eppstein, Danny Holten, M. Löffler, M. Nöllenburg, B. Speckmann, Kevin Verbeek","doi":"10.20382/jocg.v7i1a2","DOIUrl":null,"url":null,"abstract":"We define strict confluent drawing, a form of confluent drawing in which the existence of an edge is indicated by the presence of a smooth path through a system of arcs and junctions (without crossings), and in which such a path, if it exists, must be unique. We prove that it is NP-complete to determine whether a given graph has a strict confluent drawing but polynomial to determine whether it has an outerplanar strict confluent drawing with a fixed vertex ordering (a drawing within a disk, with the vertices placed in a given order on the boundary).","PeriodicalId":43044,"journal":{"name":"Journal of Computational Geometry","volume":"5 1","pages":"352-363"},"PeriodicalIF":0.4000,"publicationDate":"2013-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Strict confluent drawing\",\"authors\":\"D. Eppstein, Danny Holten, M. Löffler, M. Nöllenburg, B. Speckmann, Kevin Verbeek\",\"doi\":\"10.20382/jocg.v7i1a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define strict confluent drawing, a form of confluent drawing in which the existence of an edge is indicated by the presence of a smooth path through a system of arcs and junctions (without crossings), and in which such a path, if it exists, must be unique. We prove that it is NP-complete to determine whether a given graph has a strict confluent drawing but polynomial to determine whether it has an outerplanar strict confluent drawing with a fixed vertex ordering (a drawing within a disk, with the vertices placed in a given order on the boundary).\",\"PeriodicalId\":43044,\"journal\":{\"name\":\"Journal of Computational Geometry\",\"volume\":\"5 1\",\"pages\":\"352-363\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2013-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20382/jocg.v7i1a2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20382/jocg.v7i1a2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
We define strict confluent drawing, a form of confluent drawing in which the existence of an edge is indicated by the presence of a smooth path through a system of arcs and junctions (without crossings), and in which such a path, if it exists, must be unique. We prove that it is NP-complete to determine whether a given graph has a strict confluent drawing but polynomial to determine whether it has an outerplanar strict confluent drawing with a fixed vertex ordering (a drawing within a disk, with the vertices placed in a given order on the boundary).