严格合流图

IF 0.4 Q4 MATHEMATICS
D. Eppstein, Danny Holten, M. Löffler, M. Nöllenburg, B. Speckmann, Kevin Verbeek
{"title":"严格合流图","authors":"D. Eppstein, Danny Holten, M. Löffler, M. Nöllenburg, B. Speckmann, Kevin Verbeek","doi":"10.20382/jocg.v7i1a2","DOIUrl":null,"url":null,"abstract":"We define strict confluent drawing, a form of confluent drawing in which the existence of an edge is indicated by the presence of a smooth path through a system of arcs and junctions (without crossings), and in which such a path, if it exists, must be unique. We prove that it is NP-complete to determine whether a given graph has a strict confluent drawing but polynomial to determine whether it has an outerplanar strict confluent drawing with a fixed vertex ordering (a drawing within a disk, with the vertices placed in a given order on the boundary).","PeriodicalId":43044,"journal":{"name":"Journal of Computational Geometry","volume":"5 1","pages":"352-363"},"PeriodicalIF":0.4000,"publicationDate":"2013-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Strict confluent drawing\",\"authors\":\"D. Eppstein, Danny Holten, M. Löffler, M. Nöllenburg, B. Speckmann, Kevin Verbeek\",\"doi\":\"10.20382/jocg.v7i1a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define strict confluent drawing, a form of confluent drawing in which the existence of an edge is indicated by the presence of a smooth path through a system of arcs and junctions (without crossings), and in which such a path, if it exists, must be unique. We prove that it is NP-complete to determine whether a given graph has a strict confluent drawing but polynomial to determine whether it has an outerplanar strict confluent drawing with a fixed vertex ordering (a drawing within a disk, with the vertices placed in a given order on the boundary).\",\"PeriodicalId\":43044,\"journal\":{\"name\":\"Journal of Computational Geometry\",\"volume\":\"5 1\",\"pages\":\"352-363\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2013-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20382/jocg.v7i1a2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20382/jocg.v7i1a2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 26

摘要

我们定义了严格的合流图,一种合流图的形式,在这种合流图中,边的存在是通过圆弧和结点系统(没有交叉)的光滑路径的存在来表示的,并且这样的路径,如果存在,必须是唯一的。我们证明了判定给定图是否有严格合流图是np完全的,但判定图是否有固定顶点排序的外平面严格合流图(在圆盘内的图,顶点在边界上按给定顺序排列)是多项式的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strict confluent drawing
We define strict confluent drawing, a form of confluent drawing in which the existence of an edge is indicated by the presence of a smooth path through a system of arcs and junctions (without crossings), and in which such a path, if it exists, must be unique. We prove that it is NP-complete to determine whether a given graph has a strict confluent drawing but polynomial to determine whether it has an outerplanar strict confluent drawing with a fixed vertex ordering (a drawing within a disk, with the vertices placed in a given order on the boundary).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
0
审稿时长
52 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信