{"title":"多光谱图像中浑浊物体的检测技术","authors":"O. Nikolaeva","doi":"10.18287/2412-6179-co-1076","DOIUrl":null,"url":null,"abstract":"A multistep algorithm to detect cloudy objects in multispectral images is presented. Clustering spatial pixels by the k-means method and applying spectral criteria of cloudy/clear sky to fragments of obtained clusters are carried out in each step of the algorithm. One cloudy object is found in one step. Results of testing the algorithm on images from a sensor HYPERION (199 non-zero spectral bands in a 425 nm – 2400 nm interval under high spatial resolution of 30 m) are given. Images with discontinuous cloud cover above different surfaces (ocean, vegetation, desert, town, snow) are considered. An alternative method, in which the same spectral criteria are applied to each pixel, is also used in testing. Cloud masks obtained by both algorithms are compared. Mean spectra of obtained cloudy objects are given. The presented algorithm finds 1-3 cloudy objects corresponding to the brightness distribution in RGB images. Using the alternative algorithm (without preliminary clustering) leads to detection errors on the cloud edges. Three quality parameters are offered. The ratio of dispersion of \"cloudy\" spectra to dispersion of \"clear\" spectra is found to be most informative. This ratio should be much less than 1 when using a good cloudy mask.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Technique of detecting cloudy objects in multispectral images\",\"authors\":\"O. Nikolaeva\",\"doi\":\"10.18287/2412-6179-co-1076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A multistep algorithm to detect cloudy objects in multispectral images is presented. Clustering spatial pixels by the k-means method and applying spectral criteria of cloudy/clear sky to fragments of obtained clusters are carried out in each step of the algorithm. One cloudy object is found in one step. Results of testing the algorithm on images from a sensor HYPERION (199 non-zero spectral bands in a 425 nm – 2400 nm interval under high spatial resolution of 30 m) are given. Images with discontinuous cloud cover above different surfaces (ocean, vegetation, desert, town, snow) are considered. An alternative method, in which the same spectral criteria are applied to each pixel, is also used in testing. Cloud masks obtained by both algorithms are compared. Mean spectra of obtained cloudy objects are given. The presented algorithm finds 1-3 cloudy objects corresponding to the brightness distribution in RGB images. Using the alternative algorithm (without preliminary clustering) leads to detection errors on the cloud edges. Three quality parameters are offered. The ratio of dispersion of \\\"cloudy\\\" spectra to dispersion of \\\"clear\\\" spectra is found to be most informative. This ratio should be much less than 1 when using a good cloudy mask.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/2412-6179-co-1076\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2412-6179-co-1076","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Technique of detecting cloudy objects in multispectral images
A multistep algorithm to detect cloudy objects in multispectral images is presented. Clustering spatial pixels by the k-means method and applying spectral criteria of cloudy/clear sky to fragments of obtained clusters are carried out in each step of the algorithm. One cloudy object is found in one step. Results of testing the algorithm on images from a sensor HYPERION (199 non-zero spectral bands in a 425 nm – 2400 nm interval under high spatial resolution of 30 m) are given. Images with discontinuous cloud cover above different surfaces (ocean, vegetation, desert, town, snow) are considered. An alternative method, in which the same spectral criteria are applied to each pixel, is also used in testing. Cloud masks obtained by both algorithms are compared. Mean spectra of obtained cloudy objects are given. The presented algorithm finds 1-3 cloudy objects corresponding to the brightness distribution in RGB images. Using the alternative algorithm (without preliminary clustering) leads to detection errors on the cloud edges. Three quality parameters are offered. The ratio of dispersion of "cloudy" spectra to dispersion of "clear" spectra is found to be most informative. This ratio should be much less than 1 when using a good cloudy mask.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.