H. Nagasaki, Yuya Suzuki, T. Fujimoto, Hayato Saito, Toshihito Suzuki, Shigeyuki Watanabe
{"title":"利用高密度假丝酵母菌培养基4-6-4T2连续化凝发酵过程中空气喷射对木糖和葡萄糖产乙醇的影响","authors":"H. Nagasaki, Yuya Suzuki, T. Fujimoto, Hayato Saito, Toshihito Suzuki, Shigeyuki Watanabe","doi":"10.1627/JPI.64.178","DOIUrl":null,"url":null,"abstract":"Reducing fermentation periods and increasing ethanol productivity are cost effective for ethanol production from lignocellulosic biomass. Increasing the density of cells for fermentation typically increases ethanol productivity, but also increases the concentration of dissolved carbon dioxide (dCO2) in the fermented broth. Such accumulated dCO2 sometimes reduces ethanol production. The Continuous Chemostat Fermentation (CCF) process utilizing high density of Candida intermedia 4-6-4T2 with and without air sparging was evaluated for the effect on ethanol production and rapid fermentation using 24-h cycles. Synthetic fermentation solution without nitrogen sources containing 20 g/L xylose and 30 g/L glucose plus 5 g/L acetic acid as fermentation inhibitor was supplemented into a culture vessel at 15 mL/h, and fermented broth was recovered from the same flask at 15 mL/h. Various conditions were tested to reduce the accumulated dCO2 in the fermented broth, but air sparging at 0.056 vvm was the most effective for ethanol production in the CCF process. For the 24-h startup-batch and 6-cycle CCF process (144 h), the ethanol yield was 0.4 g/g and the cell density of the used C. intermedia 4-6-4T2 for one cycle was one-third compared to that of sequential batch fermentation.","PeriodicalId":17362,"journal":{"name":"Journal of The Japan Petroleum Institute","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of Air Sparging on Ethanol Production from Xylose and Glucose in Continuous Chemostat Fermentation Process Utilizing High Cell Density of Candida intermedia 4-6-4T2\",\"authors\":\"H. Nagasaki, Yuya Suzuki, T. Fujimoto, Hayato Saito, Toshihito Suzuki, Shigeyuki Watanabe\",\"doi\":\"10.1627/JPI.64.178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reducing fermentation periods and increasing ethanol productivity are cost effective for ethanol production from lignocellulosic biomass. Increasing the density of cells for fermentation typically increases ethanol productivity, but also increases the concentration of dissolved carbon dioxide (dCO2) in the fermented broth. Such accumulated dCO2 sometimes reduces ethanol production. The Continuous Chemostat Fermentation (CCF) process utilizing high density of Candida intermedia 4-6-4T2 with and without air sparging was evaluated for the effect on ethanol production and rapid fermentation using 24-h cycles. Synthetic fermentation solution without nitrogen sources containing 20 g/L xylose and 30 g/L glucose plus 5 g/L acetic acid as fermentation inhibitor was supplemented into a culture vessel at 15 mL/h, and fermented broth was recovered from the same flask at 15 mL/h. Various conditions were tested to reduce the accumulated dCO2 in the fermented broth, but air sparging at 0.056 vvm was the most effective for ethanol production in the CCF process. For the 24-h startup-batch and 6-cycle CCF process (144 h), the ethanol yield was 0.4 g/g and the cell density of the used C. intermedia 4-6-4T2 for one cycle was one-third compared to that of sequential batch fermentation.\",\"PeriodicalId\":17362,\"journal\":{\"name\":\"Journal of The Japan Petroleum Institute\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Japan Petroleum Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1627/JPI.64.178\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Japan Petroleum Institute","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1627/JPI.64.178","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Effect of Air Sparging on Ethanol Production from Xylose and Glucose in Continuous Chemostat Fermentation Process Utilizing High Cell Density of Candida intermedia 4-6-4T2
Reducing fermentation periods and increasing ethanol productivity are cost effective for ethanol production from lignocellulosic biomass. Increasing the density of cells for fermentation typically increases ethanol productivity, but also increases the concentration of dissolved carbon dioxide (dCO2) in the fermented broth. Such accumulated dCO2 sometimes reduces ethanol production. The Continuous Chemostat Fermentation (CCF) process utilizing high density of Candida intermedia 4-6-4T2 with and without air sparging was evaluated for the effect on ethanol production and rapid fermentation using 24-h cycles. Synthetic fermentation solution without nitrogen sources containing 20 g/L xylose and 30 g/L glucose plus 5 g/L acetic acid as fermentation inhibitor was supplemented into a culture vessel at 15 mL/h, and fermented broth was recovered from the same flask at 15 mL/h. Various conditions were tested to reduce the accumulated dCO2 in the fermented broth, but air sparging at 0.056 vvm was the most effective for ethanol production in the CCF process. For the 24-h startup-batch and 6-cycle CCF process (144 h), the ethanol yield was 0.4 g/g and the cell density of the used C. intermedia 4-6-4T2 for one cycle was one-third compared to that of sequential batch fermentation.
期刊介绍:
“Journal of the Japan Petroleum Institute”publishes articles on petroleum exploration, petroleum
refining, petrochemicals and relevant subjects (such as natural gas, coal and so on). Papers published in this journal are
also put out as the electronic journal editions on the web.
Topics may range from fundamentals to applications. The latter may deal with a variety of subjects, such as: case studies in the development of oil fields, design and operational data of industrial processes, performances of commercial products and others