探索椭圆台球中的自交n周期

IF 0.3 Q4 MATHEMATICS
Ronaldo Garcia, D. Reznik
{"title":"探索椭圆台球中的自交n周期","authors":"Ronaldo Garcia, D. Reznik","doi":"10.33039/ami.2022.02.001","DOIUrl":null,"url":null,"abstract":"This is a continuation of our simulation-based investigation of N -periodic trajectories in the elliptic billiard. With a special focus on self-intersected trajectories we (i) describe new properties of N = 4 family, (ii) derive expressions for quantities recently shown to be conserved, and to support further experimentation, we (iii) derive explicit expressions for vertices and caustic semi-axes for several families. Finally, (iv) we include links to several animations of the phenomena.","PeriodicalId":43454,"journal":{"name":"Annales Mathematicae et Informaticae","volume":"172 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring self-intersected N-periodics in the elliptic billiard\",\"authors\":\"Ronaldo Garcia, D. Reznik\",\"doi\":\"10.33039/ami.2022.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is a continuation of our simulation-based investigation of N -periodic trajectories in the elliptic billiard. With a special focus on self-intersected trajectories we (i) describe new properties of N = 4 family, (ii) derive expressions for quantities recently shown to be conserved, and to support further experimentation, we (iii) derive explicit expressions for vertices and caustic semi-axes for several families. Finally, (iv) we include links to several animations of the phenomena.\",\"PeriodicalId\":43454,\"journal\":{\"name\":\"Annales Mathematicae et Informaticae\",\"volume\":\"172 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae et Informaticae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33039/ami.2022.02.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae et Informaticae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33039/ami.2022.02.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

这是我们在椭圆台球中基于模拟的N周期轨迹研究的延续。特别关注自相交轨迹,我们(i)描述了N = 4族的新性质,(ii)推导了最近被证明是守恒的量的表达式,为了支持进一步的实验,我们(iii)推导了几个族的顶点和焦散半轴的显式表达式。最后,(iv)我们包括链接到几个动画的现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring self-intersected N-periodics in the elliptic billiard
This is a continuation of our simulation-based investigation of N -periodic trajectories in the elliptic billiard. With a special focus on self-intersected trajectories we (i) describe new properties of N = 4 family, (ii) derive expressions for quantities recently shown to be conserved, and to support further experimentation, we (iii) derive explicit expressions for vertices and caustic semi-axes for several families. Finally, (iv) we include links to several animations of the phenomena.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信