有限连通非smirnov型域上圆域的保角映射

IF 0.5 Q3 MATHEMATICS
F. Avkhadiev, P. Shabalin
{"title":"有限连通非smirnov型域上圆域的保角映射","authors":"F. Avkhadiev, P. Shabalin","doi":"10.13108/2017-9-1-3","DOIUrl":null,"url":null,"abstract":"We consider a canonical factorization and integral representation for the derivatives of the conformal mappings of circular domains on finitely-connected non-Smirnov type domains. By means of the functions in the Zygmund class, we obtain the conditions for the global univalence. Earlier similar results were obtained by a series of authors just for simply-connected domains.","PeriodicalId":43644,"journal":{"name":"Ufa Mathematical Journal","volume":"825 ","pages":"3-17"},"PeriodicalIF":0.5000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conformal mappings of circular domains on finitely-connected non-Smirnov type domains\",\"authors\":\"F. Avkhadiev, P. Shabalin\",\"doi\":\"10.13108/2017-9-1-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a canonical factorization and integral representation for the derivatives of the conformal mappings of circular domains on finitely-connected non-Smirnov type domains. By means of the functions in the Zygmund class, we obtain the conditions for the global univalence. Earlier similar results were obtained by a series of authors just for simply-connected domains.\",\"PeriodicalId\":43644,\"journal\":{\"name\":\"Ufa Mathematical Journal\",\"volume\":\"825 \",\"pages\":\"3-17\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ufa Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13108/2017-9-1-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ufa Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13108/2017-9-1-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究有限连通非smirnov型定义域上圆定义域共形映射导数的正则分解和积分表示。利用Zygmund类中的函数,得到了全局幺正性的条件。在此之前,一些作者仅对单连通域也得到了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conformal mappings of circular domains on finitely-connected non-Smirnov type domains
We consider a canonical factorization and integral representation for the derivatives of the conformal mappings of circular domains on finitely-connected non-Smirnov type domains. By means of the functions in the Zygmund class, we obtain the conditions for the global univalence. Earlier similar results were obtained by a series of authors just for simply-connected domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信