用积分度规中的Abel-Poisson积分逼近$L^{\psi}_{\beta, 1}$类函数

IF 1 Q1 MATHEMATICS
T. V. Zhyhallo, Yu. I. Kharkevych
{"title":"用积分度规中的Abel-Poisson积分逼近$L^{\\psi}_{\\beta, 1}$类函数","authors":"T. V. Zhyhallo, Yu. I. Kharkevych","doi":"10.15330/cmp.14.1.223-229","DOIUrl":null,"url":null,"abstract":"In the paper, we investigate an asymptotic behavior of the sharp upper bounds in the integral metric of deviations of the Abel-Poisson integrals from functions from the class $L^{\\psi}_{\\beta, 1}$. The Abel-Poisson integrals are solutions of the partial differential equations of elliptic type with corresponding boundary conditions, and they play an important role in applied problems. The approximative properties of the Abel-Poisson integrals on different classes of differentiable functions were studied in a number of papers. Nevertheless, a problem on the respective approximation on the classes $L^{\\psi}_{\\beta,1}$ in the metric of the space $L$ remained unsolved. We managed to obtain the estimates for the values of approximation of $(\\psi, \\beta)$-differentiable functions from the unit ball of the space $L$ by the Abel-Poisson integrals. In some cases, we also write down asymptotic equalities for these quantities, that is we solve the Kolmogorov-Nikol'skii problem for the the Abel-Poisson integrals on the classes $L^{\\psi}_{\\beta,1}$ in the integral metric.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"On approximation of functions from the class $L^{\\\\psi}_{\\\\beta, 1}$ by the Abel-Poisson integrals in the integral metric\",\"authors\":\"T. V. Zhyhallo, Yu. I. Kharkevych\",\"doi\":\"10.15330/cmp.14.1.223-229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper, we investigate an asymptotic behavior of the sharp upper bounds in the integral metric of deviations of the Abel-Poisson integrals from functions from the class $L^{\\\\psi}_{\\\\beta, 1}$. The Abel-Poisson integrals are solutions of the partial differential equations of elliptic type with corresponding boundary conditions, and they play an important role in applied problems. The approximative properties of the Abel-Poisson integrals on different classes of differentiable functions were studied in a number of papers. Nevertheless, a problem on the respective approximation on the classes $L^{\\\\psi}_{\\\\beta,1}$ in the metric of the space $L$ remained unsolved. We managed to obtain the estimates for the values of approximation of $(\\\\psi, \\\\beta)$-differentiable functions from the unit ball of the space $L$ by the Abel-Poisson integrals. In some cases, we also write down asymptotic equalities for these quantities, that is we solve the Kolmogorov-Nikol'skii problem for the the Abel-Poisson integrals on the classes $L^{\\\\psi}_{\\\\beta,1}$ in the integral metric.\",\"PeriodicalId\":42912,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.14.1.223-229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.14.1.223-229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 23

摘要

本文研究了一类$L^{\psi}_{\beta, 1}$函数的Abel-Poisson积分的偏差的积分度规的尖锐上界的渐近性。Abel-Poisson积分是具有相应边界条件的椭圆型偏微分方程的解,在应用问题中起着重要的作用。许多论文研究了不同类型的可微函数上的Abel-Poisson积分的近似性质。然而,在空间$L$的度规中,关于类$L^{\psi}_{\beta,1}$各自的近似问题仍然没有解决。利用Abel-Poisson积分,我们成功地从空间$L$的单位球上得到了$(\psi, \beta)$ -可微函数的逼近值的估计。在某些情况下,我们也写出了这些量的渐近等式,即我们解决了积分度规中$L^{\psi}_{\beta,1}$类上的Abel-Poisson积分的Kolmogorov-Nikol'skii问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On approximation of functions from the class $L^{\psi}_{\beta, 1}$ by the Abel-Poisson integrals in the integral metric
In the paper, we investigate an asymptotic behavior of the sharp upper bounds in the integral metric of deviations of the Abel-Poisson integrals from functions from the class $L^{\psi}_{\beta, 1}$. The Abel-Poisson integrals are solutions of the partial differential equations of elliptic type with corresponding boundary conditions, and they play an important role in applied problems. The approximative properties of the Abel-Poisson integrals on different classes of differentiable functions were studied in a number of papers. Nevertheless, a problem on the respective approximation on the classes $L^{\psi}_{\beta,1}$ in the metric of the space $L$ remained unsolved. We managed to obtain the estimates for the values of approximation of $(\psi, \beta)$-differentiable functions from the unit ball of the space $L$ by the Abel-Poisson integrals. In some cases, we also write down asymptotic equalities for these quantities, that is we solve the Kolmogorov-Nikol'skii problem for the the Abel-Poisson integrals on the classes $L^{\psi}_{\beta,1}$ in the integral metric.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信