{"title":"不可数离散空间的一点Lindelöfication可以是surlindelöf","authors":"O. Okunev","doi":"10.2478/s11533-013-0279-8","DOIUrl":null,"url":null,"abstract":"We prove that the one-point Lindelöfication of a discrete space of cardinality ω1 is homeomorphic to a subspace of Cp(X) for some hereditarily Lindelöf space X if the axiom holds.","PeriodicalId":50988,"journal":{"name":"Central European Journal of Mathematics","volume":"54 18","pages":"1750-1754"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2478/s11533-013-0279-8","citationCount":"0","resultStr":"{\"title\":\"The one-point Lindelöfication of an uncountable discrete space can be surlindelöf\",\"authors\":\"O. Okunev\",\"doi\":\"10.2478/s11533-013-0279-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the one-point Lindelöfication of a discrete space of cardinality ω1 is homeomorphic to a subspace of Cp(X) for some hereditarily Lindelöf space X if the axiom holds.\",\"PeriodicalId\":50988,\"journal\":{\"name\":\"Central European Journal of Mathematics\",\"volume\":\"54 18\",\"pages\":\"1750-1754\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2478/s11533-013-0279-8\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/s11533-013-0279-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11533-013-0279-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The one-point Lindelöfication of an uncountable discrete space can be surlindelöf
We prove that the one-point Lindelöfication of a discrete space of cardinality ω1 is homeomorphic to a subspace of Cp(X) for some hereditarily Lindelöf space X if the axiom holds.