在朝觐期间使用无人机进行即时计数和车辆检测

Q3 Computer Science
Abdullah M. Algamdi, Hammam M. AlGhamdi
{"title":"在朝觐期间使用无人机进行即时计数和车辆检测","authors":"Abdullah M. Algamdi, Hammam M. AlGhamdi","doi":"10.18178/joig.11.2.204-211","DOIUrl":null,"url":null,"abstract":"During the past decade, artificial intelligence technologies, especially Computer Vision (CV) technologies, have experienced significant breakthroughs due to the development of deep learning models, particularly Convolutional Neural Networks (CNNs). These networks have been utilized in various research applications, including astronomy, marine sciences, security, medicine, and pathology. In this paper, we build a framework utilizing CV technology to support decision-makers during the Hajj season. We collect and process real-time/instant images from multiple aircraft/drones, which follow the pilgrims while they move around the holy sites during Hajj. These images, taken by multiple drones, are processed in two stages. First, we purify the images collected from multiple drones and stitch them, producing one image that captures the whole holy site. Second, the stitched image is processed using a CNN to provide two pieces of information: (1) the number of buses and ambulances; and (2) the estimated count of pilgrims. This information could help decision-makers identify needs for further support during Hajj, such as logistics services, security personnel, and/or ambulances.","PeriodicalId":36336,"journal":{"name":"中国图象图形学报","volume":"88 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Instant Counting & Vehicle Detection during Hajj Using Drones\",\"authors\":\"Abdullah M. Algamdi, Hammam M. AlGhamdi\",\"doi\":\"10.18178/joig.11.2.204-211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the past decade, artificial intelligence technologies, especially Computer Vision (CV) technologies, have experienced significant breakthroughs due to the development of deep learning models, particularly Convolutional Neural Networks (CNNs). These networks have been utilized in various research applications, including astronomy, marine sciences, security, medicine, and pathology. In this paper, we build a framework utilizing CV technology to support decision-makers during the Hajj season. We collect and process real-time/instant images from multiple aircraft/drones, which follow the pilgrims while they move around the holy sites during Hajj. These images, taken by multiple drones, are processed in two stages. First, we purify the images collected from multiple drones and stitch them, producing one image that captures the whole holy site. Second, the stitched image is processed using a CNN to provide two pieces of information: (1) the number of buses and ambulances; and (2) the estimated count of pilgrims. This information could help decision-makers identify needs for further support during Hajj, such as logistics services, security personnel, and/or ambulances.\",\"PeriodicalId\":36336,\"journal\":{\"name\":\"中国图象图形学报\",\"volume\":\"88 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中国图象图形学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.18178/joig.11.2.204-211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国图象图形学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.18178/joig.11.2.204-211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

在过去的十年中,人工智能技术,特别是计算机视觉(CV)技术,由于深度学习模型的发展,特别是卷积神经网络(cnn),经历了重大突破。这些网络已用于各种研究应用,包括天文学、海洋科学、安全、医学和病理学。在本文中,我们利用CV技术构建了一个框架来支持朝觐期间的决策者。我们收集和处理来自多架飞机/无人机的实时/即时图像,这些飞机/无人机在朝觐期间跟随朝圣者在圣地周围移动。这些由多架无人机拍摄的图像分两个阶段进行处理。首先,我们净化从多个无人机收集的图像,并将它们缝合,产生一个图像,捕捉整个圣地。其次,对拼接后的图像进行CNN处理,提供两条信息:(1)公交车和救护车的数量;(2)朝圣者的估计人数。这些信息可以帮助决策者确定在朝觐期间需要进一步的支持,如后勤服务、保安人员和/或救护车。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Instant Counting & Vehicle Detection during Hajj Using Drones
During the past decade, artificial intelligence technologies, especially Computer Vision (CV) technologies, have experienced significant breakthroughs due to the development of deep learning models, particularly Convolutional Neural Networks (CNNs). These networks have been utilized in various research applications, including astronomy, marine sciences, security, medicine, and pathology. In this paper, we build a framework utilizing CV technology to support decision-makers during the Hajj season. We collect and process real-time/instant images from multiple aircraft/drones, which follow the pilgrims while they move around the holy sites during Hajj. These images, taken by multiple drones, are processed in two stages. First, we purify the images collected from multiple drones and stitch them, producing one image that captures the whole holy site. Second, the stitched image is processed using a CNN to provide two pieces of information: (1) the number of buses and ambulances; and (2) the estimated count of pilgrims. This information could help decision-makers identify needs for further support during Hajj, such as logistics services, security personnel, and/or ambulances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
中国图象图形学报
中国图象图形学报 Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
1.20
自引率
0.00%
发文量
6776
期刊介绍: Journal of Image and Graphics (ISSN 1006-8961, CN 11-3758/TB, CODEN ZTTXFZ) is an authoritative academic journal supervised by the Chinese Academy of Sciences and co-sponsored by the Institute of Space and Astronautical Information Innovation of the Chinese Academy of Sciences (ISIAS), the Chinese Society of Image and Graphics (CSIG), and the Beijing Institute of Applied Physics and Computational Mathematics (BIAPM). The journal integrates high-tech theories, technical methods and industrialisation of applied research results in computer image graphics, and mainly publishes innovative and high-level scientific research papers on basic and applied research in image graphics science and its closely related fields. The form of papers includes reviews, technical reports, project progress, academic news, new technology reviews, new product introduction and industrialisation research. The content covers a wide range of fields such as image analysis and recognition, image understanding and computer vision, computer graphics, virtual reality and augmented reality, system simulation, animation, etc., and theme columns are opened according to the research hotspots and cutting-edge topics. Journal of Image and Graphics reaches a wide range of readers, including scientific and technical personnel, enterprise supervisors, and postgraduates and college students of colleges and universities engaged in the fields of national defence, military, aviation, aerospace, communications, electronics, automotive, agriculture, meteorology, environmental protection, remote sensing, mapping, oil field, construction, transportation, finance, telecommunications, education, medical care, film and television, and art. Journal of Image and Graphics is included in many important domestic and international scientific literature database systems, including EBSCO database in the United States, JST database in Japan, Scopus database in the Netherlands, China Science and Technology Thesis Statistics and Analysis (Annual Research Report), China Science Citation Database (CSCD), China Academic Journal Network Publishing Database (CAJD), and China Academic Journal Network Publishing Database (CAJD). China Science Citation Database (CSCD), China Academic Journals Network Publishing Database (CAJD), China Academic Journal Abstracts, Chinese Science Abstracts (Series A), China Electronic Science Abstracts, Chinese Core Journals Abstracts, Chinese Academic Journals on CD-ROM, and China Academic Journals Comprehensive Evaluation Database.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信