布朗运动在八分区中的转移概率及其在默认建模中的应用

Q3 Mathematics
Vadim Kaushansky, A. Lipton, C. Reisinger
{"title":"布朗运动在八分区中的转移概率及其在默认建模中的应用","authors":"Vadim Kaushansky, A. Lipton, C. Reisinger","doi":"10.1080/1350486X.2018.1481439","DOIUrl":null,"url":null,"abstract":"ABSTRACT We derive a semi-analytical formula for the transition probability of three-dimensional Brownian motion in the positive octant with absorption at the boundaries. Separation of variables in spherical coordinates leads to an eigenvalue problem for the resulting boundary value problem in the two angular components. The main theoretical result is a solution to the original problem expressed as an expansion into special functions and an eigenvalue which has to be chosen to allow a matching of the boundary condition. We discuss and test several computational methods to solve a finite-dimensional approximation to this nonlinear eigenvalue problem. Finally, we apply our results to the computation of default probabilities and credit valuation adjustments in a structural credit model with mutual liabilities.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":"4 4","pages":"434 - 465"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1350486X.2018.1481439","citationCount":"4","resultStr":"{\"title\":\"Transition Probability of Brownian Motion in the Octant and its Application to Default Modelling\",\"authors\":\"Vadim Kaushansky, A. Lipton, C. Reisinger\",\"doi\":\"10.1080/1350486X.2018.1481439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT We derive a semi-analytical formula for the transition probability of three-dimensional Brownian motion in the positive octant with absorption at the boundaries. Separation of variables in spherical coordinates leads to an eigenvalue problem for the resulting boundary value problem in the two angular components. The main theoretical result is a solution to the original problem expressed as an expansion into special functions and an eigenvalue which has to be chosen to allow a matching of the boundary condition. We discuss and test several computational methods to solve a finite-dimensional approximation to this nonlinear eigenvalue problem. Finally, we apply our results to the computation of default probabilities and credit valuation adjustments in a structural credit model with mutual liabilities.\",\"PeriodicalId\":35818,\"journal\":{\"name\":\"Applied Mathematical Finance\",\"volume\":\"4 4\",\"pages\":\"434 - 465\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/1350486X.2018.1481439\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1350486X.2018.1481439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486X.2018.1481439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

摘要

导出了边界有吸收的正八邻域中三维布朗运动跃迁概率的半解析公式。在球坐标系中分离变量会导致两个角分量边值问题的特征值问题。主要的理论结果是原始问题的解,表示为特殊函数的展开和必须选择的特征值,以允许边界条件的匹配。我们讨论并测试了几种计算方法来解决这个非线性特征值问题的有限维近似。最后,我们将研究结果应用于具有相互负债的结构性信用模型中违约概率和信用估值调整的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transition Probability of Brownian Motion in the Octant and its Application to Default Modelling
ABSTRACT We derive a semi-analytical formula for the transition probability of three-dimensional Brownian motion in the positive octant with absorption at the boundaries. Separation of variables in spherical coordinates leads to an eigenvalue problem for the resulting boundary value problem in the two angular components. The main theoretical result is a solution to the original problem expressed as an expansion into special functions and an eigenvalue which has to be chosen to allow a matching of the boundary condition. We discuss and test several computational methods to solve a finite-dimensional approximation to this nonlinear eigenvalue problem. Finally, we apply our results to the computation of default probabilities and credit valuation adjustments in a structural credit model with mutual liabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematical Finance
Applied Mathematical Finance Economics, Econometrics and Finance-Finance
CiteScore
2.30
自引率
0.00%
发文量
6
期刊介绍: The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信