关于学习理论通用算法的说明

Q4 Mathematics
K. Dziedziul, B. Wolnik
{"title":"关于学习理论通用算法的说明","authors":"K. Dziedziul, B. Wolnik","doi":"10.4064/am34-1-5","DOIUrl":null,"url":null,"abstract":"We propose the general way of study the universal estimator for the regression problem in learning theory considered in \"Universal algorithms for learning theory Part I: piecewise constant functions\" and \"Universal algorithms for learning theory Part II: piecewise constant functions\" written by Binev, P., Cohen, A., Dahmen, W., DeVore, R., Temlyakov, V. This new approch allows us to improve results.","PeriodicalId":52313,"journal":{"name":"Applicationes Mathematicae","volume":"54 1","pages":"47-52"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Note on universal algorithms for learning theory\",\"authors\":\"K. Dziedziul, B. Wolnik\",\"doi\":\"10.4064/am34-1-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose the general way of study the universal estimator for the regression problem in learning theory considered in \\\"Universal algorithms for learning theory Part I: piecewise constant functions\\\" and \\\"Universal algorithms for learning theory Part II: piecewise constant functions\\\" written by Binev, P., Cohen, A., Dahmen, W., DeVore, R., Temlyakov, V. This new approch allows us to improve results.\",\"PeriodicalId\":52313,\"journal\":{\"name\":\"Applicationes Mathematicae\",\"volume\":\"54 1\",\"pages\":\"47-52\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applicationes Mathematicae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4064/am34-1-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicationes Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/am34-1-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了研究学习理论中回归问题的通用估计量的一般方法,在“学习理论的通用算法第一部分:分段常数函数”和“学习理论的通用算法第二部分:分段常数函数”中被认为是由Binev, P., Cohen, A., Dahmen, W., DeVore, R., Temlyakov, V.写的。这种新方法使我们能够改进结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Note on universal algorithms for learning theory
We propose the general way of study the universal estimator for the regression problem in learning theory considered in "Universal algorithms for learning theory Part I: piecewise constant functions" and "Universal algorithms for learning theory Part II: piecewise constant functions" written by Binev, P., Cohen, A., Dahmen, W., DeVore, R., Temlyakov, V. This new approch allows us to improve results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applicationes Mathematicae
Applicationes Mathematicae Mathematics-Applied Mathematics
CiteScore
0.30
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信