{"title":"关于学习理论通用算法的说明","authors":"K. Dziedziul, B. Wolnik","doi":"10.4064/am34-1-5","DOIUrl":null,"url":null,"abstract":"We propose the general way of study the universal estimator for the regression problem in learning theory considered in \"Universal algorithms for learning theory Part I: piecewise constant functions\" and \"Universal algorithms for learning theory Part II: piecewise constant functions\" written by Binev, P., Cohen, A., Dahmen, W., DeVore, R., Temlyakov, V. This new approch allows us to improve results.","PeriodicalId":52313,"journal":{"name":"Applicationes Mathematicae","volume":"54 1","pages":"47-52"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Note on universal algorithms for learning theory\",\"authors\":\"K. Dziedziul, B. Wolnik\",\"doi\":\"10.4064/am34-1-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose the general way of study the universal estimator for the regression problem in learning theory considered in \\\"Universal algorithms for learning theory Part I: piecewise constant functions\\\" and \\\"Universal algorithms for learning theory Part II: piecewise constant functions\\\" written by Binev, P., Cohen, A., Dahmen, W., DeVore, R., Temlyakov, V. This new approch allows us to improve results.\",\"PeriodicalId\":52313,\"journal\":{\"name\":\"Applicationes Mathematicae\",\"volume\":\"54 1\",\"pages\":\"47-52\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applicationes Mathematicae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4064/am34-1-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicationes Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/am34-1-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
We propose the general way of study the universal estimator for the regression problem in learning theory considered in "Universal algorithms for learning theory Part I: piecewise constant functions" and "Universal algorithms for learning theory Part II: piecewise constant functions" written by Binev, P., Cohen, A., Dahmen, W., DeVore, R., Temlyakov, V. This new approch allows us to improve results.