{"title":"无界域上的简单部分分式近似","authors":"P. Borodin, K. Shklyaev","doi":"10.1070/SM9298","DOIUrl":null,"url":null,"abstract":"For unbounded simply connected domains in the complex plane, bounded by several simple curves with regular asymptotic behaviour at infinity, we obtain necessary conditions and sufficient conditions for simple partial fractions (logarithmic derivatives of polynomials) with poles on the boundary of to be dense in the space of holomorphic functions in (with the topology of uniform convergence on compact subsets of ). In the case of a strip bounded by two parallel lines, we give estimates for the convergence rate to zero in the interior of of simple partial fractions with poles on the boundary of and with one fixed pole. Bibliography: 16 titles.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Approximation by simple partial fractions in unbounded domains\",\"authors\":\"P. Borodin, K. Shklyaev\",\"doi\":\"10.1070/SM9298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For unbounded simply connected domains in the complex plane, bounded by several simple curves with regular asymptotic behaviour at infinity, we obtain necessary conditions and sufficient conditions for simple partial fractions (logarithmic derivatives of polynomials) with poles on the boundary of to be dense in the space of holomorphic functions in (with the topology of uniform convergence on compact subsets of ). In the case of a strip bounded by two parallel lines, we give estimates for the convergence rate to zero in the interior of of simple partial fractions with poles on the boundary of and with one fixed pole. Bibliography: 16 titles.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1070/SM9298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/SM9298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Approximation by simple partial fractions in unbounded domains
For unbounded simply connected domains in the complex plane, bounded by several simple curves with regular asymptotic behaviour at infinity, we obtain necessary conditions and sufficient conditions for simple partial fractions (logarithmic derivatives of polynomials) with poles on the boundary of to be dense in the space of holomorphic functions in (with the topology of uniform convergence on compact subsets of ). In the case of a strip bounded by two parallel lines, we give estimates for the convergence rate to zero in the interior of of simple partial fractions with poles on the boundary of and with one fixed pole. Bibliography: 16 titles.