无界域上的简单部分分式近似

Pub Date : 2021-01-01 DOI:10.1070/SM9298
P. Borodin, K. Shklyaev
{"title":"无界域上的简单部分分式近似","authors":"P. Borodin, K. Shklyaev","doi":"10.1070/SM9298","DOIUrl":null,"url":null,"abstract":"For unbounded simply connected domains in the complex plane, bounded by several simple curves with regular asymptotic behaviour at infinity, we obtain necessary conditions and sufficient conditions for simple partial fractions (logarithmic derivatives of polynomials) with poles on the boundary of to be dense in the space of holomorphic functions in (with the topology of uniform convergence on compact subsets of ). In the case of a strip bounded by two parallel lines, we give estimates for the convergence rate to zero in the interior of of simple partial fractions with poles on the boundary of and with one fixed pole. Bibliography: 16 titles.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Approximation by simple partial fractions in unbounded domains\",\"authors\":\"P. Borodin, K. Shklyaev\",\"doi\":\"10.1070/SM9298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For unbounded simply connected domains in the complex plane, bounded by several simple curves with regular asymptotic behaviour at infinity, we obtain necessary conditions and sufficient conditions for simple partial fractions (logarithmic derivatives of polynomials) with poles on the boundary of to be dense in the space of holomorphic functions in (with the topology of uniform convergence on compact subsets of ). In the case of a strip bounded by two parallel lines, we give estimates for the convergence rate to zero in the interior of of simple partial fractions with poles on the boundary of and with one fixed pole. Bibliography: 16 titles.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1070/SM9298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/SM9298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对于复平面上由若干在无穷远处具有正则渐近行为的简单曲线所界的无界单连通域,我们得到了在的边界上具有极点的简单部分分式(多项式的对数导数)在的紧子集上具有一致收敛拓扑的全纯函数空间中是稠密的必要条件和充分条件。在两条平行线为界的条形情况下,我们给出了在边界上有极点且有一个固定极点的简单部分分式的收敛速率在内部趋近于零的估计。参考书目:16篇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Approximation by simple partial fractions in unbounded domains
For unbounded simply connected domains in the complex plane, bounded by several simple curves with regular asymptotic behaviour at infinity, we obtain necessary conditions and sufficient conditions for simple partial fractions (logarithmic derivatives of polynomials) with poles on the boundary of to be dense in the space of holomorphic functions in (with the topology of uniform convergence on compact subsets of ). In the case of a strip bounded by two parallel lines, we give estimates for the convergence rate to zero in the interior of of simple partial fractions with poles on the boundary of and with one fixed pole. Bibliography: 16 titles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信