牛顿势和胡克势中运动的对称性和稳定性

IF 0.7 Q4 MECHANICS
C. Carimalo
{"title":"牛顿势和胡克势中运动的对称性和稳定性","authors":"C. Carimalo","doi":"10.2298/tam220213005c","DOIUrl":null,"url":null,"abstract":"A new way of looking at symmetries is proposed, especially regarding their role in the stability of two-body motions in the Newtonian and the Hookean potentials, the two selected by Bertrand?s theorem. The role of the number of spatial dimensions is also addressed.","PeriodicalId":44059,"journal":{"name":"Theoretical and Applied Mechanics","volume":"1 3","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetries and stability of motions in the Newtonian and the Hookean potentials\",\"authors\":\"C. Carimalo\",\"doi\":\"10.2298/tam220213005c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new way of looking at symmetries is proposed, especially regarding their role in the stability of two-body motions in the Newtonian and the Hookean potentials, the two selected by Bertrand?s theorem. The role of the number of spatial dimensions is also addressed.\",\"PeriodicalId\":44059,\"journal\":{\"name\":\"Theoretical and Applied Mechanics\",\"volume\":\"1 3\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/tam220213005c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/tam220213005c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种观察对称性的新方法,特别是关于它们在牛顿势和胡克势中两体运动稳定性中的作用,这两种势由伯特兰?年代定理。还讨论了空间维度数量的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetries and stability of motions in the Newtonian and the Hookean potentials
A new way of looking at symmetries is proposed, especially regarding their role in the stability of two-body motions in the Newtonian and the Hookean potentials, the two selected by Bertrand?s theorem. The role of the number of spatial dimensions is also addressed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
4
审稿时长
32 weeks
期刊介绍: Theoretical and Applied Mechanics (TAM) invites submission of original scholarly work in all fields of theoretical and applied mechanics. TAM features selected high quality research articles that represent the broad spectrum of interest in mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信