lsamvy过程习惯于停留在半空间中,应用于极端方向

IF 0.7 Q3 STATISTICS & PROBABILITY
J. Ivanovs, Jakob D. Thostesen
{"title":"lsamvy过程习惯于停留在半空间中,应用于极端方向","authors":"J. Ivanovs, Jakob D. Thostesen","doi":"10.15559/22-vmsta217","DOIUrl":null,"url":null,"abstract":"This paper provides a multivariate extension of Bertoin’s pathwise construction of a Lévy process conditioned to stay positive or negative. Thus obtained processes conditioned to stay in half-spaces are closely related to the original process on a compact time interval seen from its directional extremal points. In the case of a correlated Brownian motion the law of the conditioned process is obtained by a linear transformation of a standard Brownian motion and an independent Bessel-3 process. Further motivation is provided by a limit theorem corresponding to zooming in on a Lévy process with a Brownian part at the point of its directional infimum. Applications to zooming in at the point furthest from the origin are envisaged.","PeriodicalId":42685,"journal":{"name":"Modern Stochastics-Theory and Applications","volume":"30 4","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lévy processes conditioned to stay in a half-space with applications to directional extremes\",\"authors\":\"J. Ivanovs, Jakob D. Thostesen\",\"doi\":\"10.15559/22-vmsta217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides a multivariate extension of Bertoin’s pathwise construction of a Lévy process conditioned to stay positive or negative. Thus obtained processes conditioned to stay in half-spaces are closely related to the original process on a compact time interval seen from its directional extremal points. In the case of a correlated Brownian motion the law of the conditioned process is obtained by a linear transformation of a standard Brownian motion and an independent Bessel-3 process. Further motivation is provided by a limit theorem corresponding to zooming in on a Lévy process with a Brownian part at the point of its directional infimum. Applications to zooming in at the point furthest from the origin are envisaged.\",\"PeriodicalId\":42685,\"journal\":{\"name\":\"Modern Stochastics-Theory and Applications\",\"volume\":\"30 4\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Stochastics-Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15559/22-vmsta217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Stochastics-Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15559/22-vmsta217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了Bertoin关于lsamvy过程的路径构造的多元推广。由此得到的停留在半空间中的过程,从其方向极值点看,在紧致的时间间隔上与原始过程密切相关。在相关布朗运动的情况下,条件过程的规律是通过标准布朗运动和独立贝塞尔-3过程的线性变换得到的。进一步的动机由一个极限定理提供,该极限定理对应于放大具有布朗部分的lsamvy过程在其方向无穷大点上。设想了在离原点最远的点上放大的应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lévy processes conditioned to stay in a half-space with applications to directional extremes
This paper provides a multivariate extension of Bertoin’s pathwise construction of a Lévy process conditioned to stay positive or negative. Thus obtained processes conditioned to stay in half-spaces are closely related to the original process on a compact time interval seen from its directional extremal points. In the case of a correlated Brownian motion the law of the conditioned process is obtained by a linear transformation of a standard Brownian motion and an independent Bessel-3 process. Further motivation is provided by a limit theorem corresponding to zooming in on a Lévy process with a Brownian part at the point of its directional infimum. Applications to zooming in at the point furthest from the origin are envisaged.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Modern Stochastics-Theory and Applications
Modern Stochastics-Theory and Applications STATISTICS & PROBABILITY-
CiteScore
1.30
自引率
50.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信