图的最小覆盖倒数距离无符号拉普拉斯能量

IF 0.3 Q4 COMPUTER SCIENCE, THEORY & METHODS
A. Alhevaz, M. Baghipur, E. Hashemi, Y. Alizadeh
{"title":"图的最小覆盖倒数距离无符号拉普拉斯能量","authors":"A. Alhevaz, M. Baghipur, E. Hashemi, Y. Alizadeh","doi":"10.2478/ausi-2018-0011","DOIUrl":null,"url":null,"abstract":"Abstract Let G be a simple connected graph. The reciprocal transmission Tr′G(ν) of a vertex ν is defined as TrG′(ν)=∑u∈V(G)1dG(u,ν),           u≠ν. $${\\rm{Tr}}_{\\rm{G}}^\\prime ({\\rm{\\nu }}) = \\sum\\limits_{{\\rm{u}} \\in {\\rm{V}}(G)} {{1 \\over {{{\\rm{d}}_{\\rm{G}}}(u,{\\rm{\\nu }})}}{\\rm{u}} \\ne {\\rm{\\nu }}.} $$ The reciprocal distance signless Laplacian (briefly RDSL) matrix of a connected graph G is defined as RQ(G)= diag(Tr′ (G)) + RD(G), where RD(G) is the Harary matrix (reciprocal distance matrix) of G and diag(Tr′ (G)) is the diagonal matrix of the vertex reciprocal transmissions in G. In this paper, we investigate the RDSL spectrum of some classes of graphs that are arisen from graph operations such as cartesian product, extended double cover product and InduBala product. We introduce minimum covering reciprocal distance signless Laplacian matrix (or briey MCRDSL matrix) of G as the square matrix of order n, RQC(G) := (qi;j), qij={1+Tr′(νi)ifi=jandνi∈CTr′(νi)ifi=jandνi∉C1d(νi,νj)otherwise $${{\\rm{q}}_{{\\rm{ij}}}} = \\left\\{ {\\matrix{ {1 + {\\rm{Tr}}\\prime ({{\\rm{\\nu }}_{\\rm{i}}})} & {{\\rm{if}}} & {{\\rm{i = j}}} & {{\\rm{and}}} & {{{\\rm{\\nu }}_{\\rm{i}}} \\in {\\rm{C}}} \\cr {{\\rm{Tr}}\\prime ({{\\rm{\\nu }}_{\\rm{i}}})} & {{\\rm{if}}} & {{\\rm{i = j}}} & {{\\rm{and}}} & {{{\\rm{\\nu }}_{\\rm{i}}} \\notin {\\rm{C}}} \\cr {{1 \\over {{\\rm{d(}}{{\\rm{\\nu }}_{\\rm{i}}},{{\\rm{\\nu }}_{\\rm{j}}})}}} & {{\\rm{otherwise}}} & {} & {} & {} \\cr } } \\right.$$ where C is a minimum vertex cover set of G. MCRDSL energy of a graph G is defined as sum of eigenvalues of RQC. Extremal graphs with respect to MCRDSL energy of graph are characterized. We also obtain some bounds on MCRDSL energy of a graph and MCRDSL spectral radius of 𝒢, which is the largest eigenvalue of the matrix RQC (G) of graphs.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"40 12","pages":"218 - 240"},"PeriodicalIF":0.3000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Minimum covering reciprocal distance signless Laplacian energy of graphs\",\"authors\":\"A. Alhevaz, M. Baghipur, E. Hashemi, Y. Alizadeh\",\"doi\":\"10.2478/ausi-2018-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let G be a simple connected graph. The reciprocal transmission Tr′G(ν) of a vertex ν is defined as TrG′(ν)=∑u∈V(G)1dG(u,ν),           u≠ν. $${\\\\rm{Tr}}_{\\\\rm{G}}^\\\\prime ({\\\\rm{\\\\nu }}) = \\\\sum\\\\limits_{{\\\\rm{u}} \\\\in {\\\\rm{V}}(G)} {{1 \\\\over {{{\\\\rm{d}}_{\\\\rm{G}}}(u,{\\\\rm{\\\\nu }})}}{\\\\rm{u}} \\\\ne {\\\\rm{\\\\nu }}.} $$ The reciprocal distance signless Laplacian (briefly RDSL) matrix of a connected graph G is defined as RQ(G)= diag(Tr′ (G)) + RD(G), where RD(G) is the Harary matrix (reciprocal distance matrix) of G and diag(Tr′ (G)) is the diagonal matrix of the vertex reciprocal transmissions in G. In this paper, we investigate the RDSL spectrum of some classes of graphs that are arisen from graph operations such as cartesian product, extended double cover product and InduBala product. We introduce minimum covering reciprocal distance signless Laplacian matrix (or briey MCRDSL matrix) of G as the square matrix of order n, RQC(G) := (qi;j), qij={1+Tr′(νi)ifi=jandνi∈CTr′(νi)ifi=jandνi∉C1d(νi,νj)otherwise $${{\\\\rm{q}}_{{\\\\rm{ij}}}} = \\\\left\\\\{ {\\\\matrix{ {1 + {\\\\rm{Tr}}\\\\prime ({{\\\\rm{\\\\nu }}_{\\\\rm{i}}})} & {{\\\\rm{if}}} & {{\\\\rm{i = j}}} & {{\\\\rm{and}}} & {{{\\\\rm{\\\\nu }}_{\\\\rm{i}}} \\\\in {\\\\rm{C}}} \\\\cr {{\\\\rm{Tr}}\\\\prime ({{\\\\rm{\\\\nu }}_{\\\\rm{i}}})} & {{\\\\rm{if}}} & {{\\\\rm{i = j}}} & {{\\\\rm{and}}} & {{{\\\\rm{\\\\nu }}_{\\\\rm{i}}} \\\\notin {\\\\rm{C}}} \\\\cr {{1 \\\\over {{\\\\rm{d(}}{{\\\\rm{\\\\nu }}_{\\\\rm{i}}},{{\\\\rm{\\\\nu }}_{\\\\rm{j}}})}}} & {{\\\\rm{otherwise}}} & {} & {} & {} \\\\cr } } \\\\right.$$ where C is a minimum vertex cover set of G. MCRDSL energy of a graph G is defined as sum of eigenvalues of RQC. Extremal graphs with respect to MCRDSL energy of graph are characterized. We also obtain some bounds on MCRDSL energy of a graph and MCRDSL spectral radius of 𝒢, which is the largest eigenvalue of the matrix RQC (G) of graphs.\",\"PeriodicalId\":41480,\"journal\":{\"name\":\"Acta Universitatis Sapientiae Informatica\",\"volume\":\"40 12\",\"pages\":\"218 - 240\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Universitatis Sapientiae Informatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausi-2018-0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2018-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

摘要

设G是一个简单连通图。相互传输Tr石头(ν)的一个顶点ν被定义为丹”(ν)=∑u∈V (G) 1 dg (u,ν ),            u≠ν。$ $ {\ rm {Tr}} _ {\ rm {G}} ^ \ ' ({\ rm{\ν}})= \ \ limits_总和{{\ rm{你}}在{\ rm {V}} \ (G)} {{1 \ / {{{rm \ d {}} _ {\ rm {G}}} (u, {\ rm{\ν}})}}{\ rm{你}}\ {\ rm{\ν}}。定义连通图G的互反距离无符号拉普拉斯(简称RDSL)矩阵为RQ(G)= diag(Tr′(G)) + RD(G),其中RD(G)是G的Harary矩阵(互反距离矩阵),diag(Tr′(G))是G中顶点互反传输的对角矩阵。本文研究了由笛卡尔积、扩展双盖积和InduBala积等图运算产生的几类图的RDSL谱。引入G的最小覆盖倒数距离无符号拉普拉斯矩阵(或简写MCRDSL矩阵)为n阶方阵,RQC(G):= (qi;j),qij = {1 + Tr的金融机构(νi) = jandν我∈CTr的金融机构(νi) = jandν我∉C1d(ν我,νj)否则$ $ {{\ rm {q}} _ {{\ rm {ij}}}} = \左\{{\矩阵{{1 + {\ rm {Tr}} \ ' ({{\ rm{\ν}}_ {\ rm{我 }}})} & {{\ rm{如果}}}和{{\ rm {i = j}}}和{{\ rm{和 }}} & {{{\ rm{\ν}}_ {\ rm{我}}}在{\ rm {C}}} \ \ cr {{\ rm {Tr}} \ ' ({{\ rm{\ν}}_ {\ rm{我 }}})} & {{\ rm{如果}}}和{{\ rm {i = j}}}和{{\ rm{和 }}} & {{{\ rm{\ν}}_ {\ rm{我}}}范围内随意抽查,\ {\ rm {C}}} \ cr {{1 \ / {{\ rm {d (}} {{\ rm{\ν}}_ {\ rm{我}}},{{\ rm{\ν}}_ {\ rm {j }}})}}} & {{\ rm{否则 }}} & {} & {} & {} \ cr}}、正确的。其中C是G的最小顶点覆盖集,定义图G的MCRDSL能量为RQC的特征值之和。利用图的MCRDSL能量对极值图进行了刻画。我们还得到了图的MCRDSL能量的一些界和图的矩阵RQC (G)的最大特征值𝒢的MCRDSL谱半径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimum covering reciprocal distance signless Laplacian energy of graphs
Abstract Let G be a simple connected graph. The reciprocal transmission Tr′G(ν) of a vertex ν is defined as TrG′(ν)=∑u∈V(G)1dG(u,ν),           u≠ν. $${\rm{Tr}}_{\rm{G}}^\prime ({\rm{\nu }}) = \sum\limits_{{\rm{u}} \in {\rm{V}}(G)} {{1 \over {{{\rm{d}}_{\rm{G}}}(u,{\rm{\nu }})}}{\rm{u}} \ne {\rm{\nu }}.} $$ The reciprocal distance signless Laplacian (briefly RDSL) matrix of a connected graph G is defined as RQ(G)= diag(Tr′ (G)) + RD(G), where RD(G) is the Harary matrix (reciprocal distance matrix) of G and diag(Tr′ (G)) is the diagonal matrix of the vertex reciprocal transmissions in G. In this paper, we investigate the RDSL spectrum of some classes of graphs that are arisen from graph operations such as cartesian product, extended double cover product and InduBala product. We introduce minimum covering reciprocal distance signless Laplacian matrix (or briey MCRDSL matrix) of G as the square matrix of order n, RQC(G) := (qi;j), qij={1+Tr′(νi)ifi=jandνi∈CTr′(νi)ifi=jandνi∉C1d(νi,νj)otherwise $${{\rm{q}}_{{\rm{ij}}}} = \left\{ {\matrix{ {1 + {\rm{Tr}}\prime ({{\rm{\nu }}_{\rm{i}}})} & {{\rm{if}}} & {{\rm{i = j}}} & {{\rm{and}}} & {{{\rm{\nu }}_{\rm{i}}} \in {\rm{C}}} \cr {{\rm{Tr}}\prime ({{\rm{\nu }}_{\rm{i}}})} & {{\rm{if}}} & {{\rm{i = j}}} & {{\rm{and}}} & {{{\rm{\nu }}_{\rm{i}}} \notin {\rm{C}}} \cr {{1 \over {{\rm{d(}}{{\rm{\nu }}_{\rm{i}}},{{\rm{\nu }}_{\rm{j}}})}}} & {{\rm{otherwise}}} & {} & {} & {} \cr } } \right.$$ where C is a minimum vertex cover set of G. MCRDSL energy of a graph G is defined as sum of eigenvalues of RQC. Extremal graphs with respect to MCRDSL energy of graph are characterized. We also obtain some bounds on MCRDSL energy of a graph and MCRDSL spectral radius of 𝒢, which is the largest eigenvalue of the matrix RQC (G) of graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Universitatis Sapientiae Informatica
Acta Universitatis Sapientiae Informatica COMPUTER SCIENCE, THEORY & METHODS-
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信