在分布阶时间分数扩散方程中识别与空间相关的源项

IF 1 4区 数学 Q1 MATHEMATICS
Dinh Nguyen Duy Hai
{"title":"在分布阶时间分数扩散方程中识别与空间相关的源项","authors":"Dinh Nguyen Duy Hai","doi":"10.3934/mcrf.2022025","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to investigate an inverse problem of recovering a space-dependent source term governed by distributed order time-fractional diffusion equations in Hilbert scales. Such a problem is ill-posed and has important practical applications. For this problem, we propose a general regularization method based on the idea of the filter method. With a suitable source condition, we prove that the method is of optimal order under various choices of regularization parameter. One is based on the a priori regularization parameter choice rule and another one is the discrepancy principle. Finally, the capabilities of our method are illustrated by both the Tikhonov and the Landweber method.","PeriodicalId":48889,"journal":{"name":"Mathematical Control and Related Fields","volume":"89 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Identifying a space-dependent source term in distributed order time-fractional diffusion equations\",\"authors\":\"Dinh Nguyen Duy Hai\",\"doi\":\"10.3934/mcrf.2022025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to investigate an inverse problem of recovering a space-dependent source term governed by distributed order time-fractional diffusion equations in Hilbert scales. Such a problem is ill-posed and has important practical applications. For this problem, we propose a general regularization method based on the idea of the filter method. With a suitable source condition, we prove that the method is of optimal order under various choices of regularization parameter. One is based on the a priori regularization parameter choice rule and another one is the discrepancy principle. Finally, the capabilities of our method are illustrated by both the Tikhonov and the Landweber method.\",\"PeriodicalId\":48889,\"journal\":{\"name\":\"Mathematical Control and Related Fields\",\"volume\":\"89 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Control and Related Fields\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/mcrf.2022025\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Control and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/mcrf.2022025","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文的目的是研究Hilbert尺度下由分布阶时间分数扩散方程控制的空间依赖源项的反演问题。这样的问题是不适定的,具有重要的实际应用。针对这一问题,我们提出了一种基于滤波方法思想的通用正则化方法。在合适的源条件下,证明了该方法在各种正则化参数的选择下都是最优阶的。一种是基于先验正则化参数选择规则,另一种是差异原则。最后,通过吉洪诺夫方法和兰德韦伯方法说明了我们的方法的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying a space-dependent source term in distributed order time-fractional diffusion equations
The aim of this paper is to investigate an inverse problem of recovering a space-dependent source term governed by distributed order time-fractional diffusion equations in Hilbert scales. Such a problem is ill-posed and has important practical applications. For this problem, we propose a general regularization method based on the idea of the filter method. With a suitable source condition, we prove that the method is of optimal order under various choices of regularization parameter. One is based on the a priori regularization parameter choice rule and another one is the discrepancy principle. Finally, the capabilities of our method are illustrated by both the Tikhonov and the Landweber method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Control and Related Fields
Mathematical Control and Related Fields MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
8.30%
发文量
67
期刊介绍: MCRF aims to publish original research as well as expository papers on mathematical control theory and related fields. The goal is to provide a complete and reliable source of mathematical methods and results in this field. The journal will also accept papers from some related fields such as differential equations, functional analysis, probability theory and stochastic analysis, inverse problems, optimization, numerical computation, mathematical finance, information theory, game theory, system theory, etc., provided that they have some intrinsic connections with control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信