每一个真正的3美元流形都是真正的接触

Pub Date : 2021-04-12 DOI:10.4310/JSG.2022.v20.n6.a3
M. Cengiz, Ferit Ozturk
{"title":"每一个真正的3美元流形都是真正的接触","authors":"M. Cengiz, Ferit Ozturk","doi":"10.4310/JSG.2022.v20.n6.a3","DOIUrl":null,"url":null,"abstract":"A real 3-manifold is a smooth 3-manifold together with an orientation preserving smooth involution, which is called a real structure. A real contact 3-manifold is a real 3-manifold with a contact distribution that is antisymmetric with respect to the real structure. We show that every real 3-manifold can be obtained via surgery along invariant knots starting from the standard real $S^3$ and that this operation can be performed in the contact setting too. Using this result we prove that any real 3-manifold admits a real contact structure. As a corollary we show that any oriented overtwisted contact structure on an integer homology real 3-sphere can be isotoped to be real. Finally we give construction examples on $S^1\\times S^2$ and lens spaces. For instance on every lens space there exists a unique real structure that acts on each Heegaard torus as hyperellipic involution. We show that any tight contact structure on any lens space is real with respect to that real structure.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Every real $3$-manifold is real contact\",\"authors\":\"M. Cengiz, Ferit Ozturk\",\"doi\":\"10.4310/JSG.2022.v20.n6.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A real 3-manifold is a smooth 3-manifold together with an orientation preserving smooth involution, which is called a real structure. A real contact 3-manifold is a real 3-manifold with a contact distribution that is antisymmetric with respect to the real structure. We show that every real 3-manifold can be obtained via surgery along invariant knots starting from the standard real $S^3$ and that this operation can be performed in the contact setting too. Using this result we prove that any real 3-manifold admits a real contact structure. As a corollary we show that any oriented overtwisted contact structure on an integer homology real 3-sphere can be isotoped to be real. Finally we give construction examples on $S^1\\\\times S^2$ and lens spaces. For instance on every lens space there exists a unique real structure that acts on each Heegaard torus as hyperellipic involution. We show that any tight contact structure on any lens space is real with respect to that real structure.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/JSG.2022.v20.n6.a3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/JSG.2022.v20.n6.a3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

实3-流形是光滑的3-流形加上保持方向的光滑对合,称为实结构。实接触3流形是具有相对于实结构反对称的接触分布的实3流形。我们证明了每一个实3流形都可以通过从标准实$S^3$开始沿着不变结点的手术得到,并且该手术也可以在接触设置中进行。利用这一结果证明了任何实3流形都存在实接触结构。作为一个推论,我们证明了在整数同调实3球上任何取向的超扭接触结构都可以同位素为实结构。最后给出了$S^1\ * S^2$和透镜空间的构造例子。例如,在每个透镜空间上都存在一个独特的真实结构,该结构作用于每个heegard环,作为超椭圆对合。我们证明了任何透镜空间上的紧密接触结构相对于那个实结构是实的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Every real $3$-manifold is real contact
A real 3-manifold is a smooth 3-manifold together with an orientation preserving smooth involution, which is called a real structure. A real contact 3-manifold is a real 3-manifold with a contact distribution that is antisymmetric with respect to the real structure. We show that every real 3-manifold can be obtained via surgery along invariant knots starting from the standard real $S^3$ and that this operation can be performed in the contact setting too. Using this result we prove that any real 3-manifold admits a real contact structure. As a corollary we show that any oriented overtwisted contact structure on an integer homology real 3-sphere can be isotoped to be real. Finally we give construction examples on $S^1\times S^2$ and lens spaces. For instance on every lens space there exists a unique real structure that acts on each Heegaard torus as hyperellipic involution. We show that any tight contact structure on any lens space is real with respect to that real structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信