C. Langlois, Jean-Daniel Chazot, Li Cheng, E. Perrey-Debain
{"title":"二维振声建模的单元划分有限元法","authors":"C. Langlois, Jean-Daniel Chazot, Li Cheng, E. Perrey-Debain","doi":"10.1142/s2591728521500250","DOIUrl":null,"url":null,"abstract":"The Partition of Unity Finite Element Method (PUFEM) shows promise for modeling wave-like problems in the mid-to-high frequency range, allowing to capture several wavelengths in a single element. Despite the increasing attention it received in acoustics and in structural dynamics, its efficacy to deal with coupled problems has not been addressed. The main challenge in this case is to be able to represent different types of physical waves accurately, knowing that the wavelengths can be very different and vary differently, exemplified by the dispersion of flexural waves in a solid. Without a proper handling of the coupling between the coupled media, at best the number of degrees of freedom (DoF) will not be optimal, at worst the coupled model will not converge. Techniques like mesh refinement, wave enrichment and compatible or incompatible meshes might offer a potential solution to the problem, but the model usually needs to be adjusted through a time consuming trial-and-error procedure. To tackle the problem, this paper considers a 2D coupled vibro-acoustic problem, in which the structural and acoustic domains, modeled with PUFEM, are coupled using compatible and incompatible meshes based on different coupling strategies. Numerical analyses show that the proposed method outperforms the classical finite element method by several orders of magnitude in terms of number of DoF. Recommendations are proposed on the technique to choose depending on the frequency range of interest in relation to the critical frequency of the structure to ensure the best convergence rate. Finally, an application example is presented to highlight the performance of the proposed method.","PeriodicalId":55976,"journal":{"name":"Journal of Theoretical and Computational Acoustics","volume":"27 4","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Partition of Unity Finite Element Method for 2D Vibro-Acoustic Modeling\",\"authors\":\"C. Langlois, Jean-Daniel Chazot, Li Cheng, E. Perrey-Debain\",\"doi\":\"10.1142/s2591728521500250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Partition of Unity Finite Element Method (PUFEM) shows promise for modeling wave-like problems in the mid-to-high frequency range, allowing to capture several wavelengths in a single element. Despite the increasing attention it received in acoustics and in structural dynamics, its efficacy to deal with coupled problems has not been addressed. The main challenge in this case is to be able to represent different types of physical waves accurately, knowing that the wavelengths can be very different and vary differently, exemplified by the dispersion of flexural waves in a solid. Without a proper handling of the coupling between the coupled media, at best the number of degrees of freedom (DoF) will not be optimal, at worst the coupled model will not converge. Techniques like mesh refinement, wave enrichment and compatible or incompatible meshes might offer a potential solution to the problem, but the model usually needs to be adjusted through a time consuming trial-and-error procedure. To tackle the problem, this paper considers a 2D coupled vibro-acoustic problem, in which the structural and acoustic domains, modeled with PUFEM, are coupled using compatible and incompatible meshes based on different coupling strategies. Numerical analyses show that the proposed method outperforms the classical finite element method by several orders of magnitude in terms of number of DoF. Recommendations are proposed on the technique to choose depending on the frequency range of interest in relation to the critical frequency of the structure to ensure the best convergence rate. Finally, an application example is presented to highlight the performance of the proposed method.\",\"PeriodicalId\":55976,\"journal\":{\"name\":\"Journal of Theoretical and Computational Acoustics\",\"volume\":\"27 4\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theoretical and Computational Acoustics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s2591728521500250\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical and Computational Acoustics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s2591728521500250","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
Partition of Unity Finite Element Method for 2D Vibro-Acoustic Modeling
The Partition of Unity Finite Element Method (PUFEM) shows promise for modeling wave-like problems in the mid-to-high frequency range, allowing to capture several wavelengths in a single element. Despite the increasing attention it received in acoustics and in structural dynamics, its efficacy to deal with coupled problems has not been addressed. The main challenge in this case is to be able to represent different types of physical waves accurately, knowing that the wavelengths can be very different and vary differently, exemplified by the dispersion of flexural waves in a solid. Without a proper handling of the coupling between the coupled media, at best the number of degrees of freedom (DoF) will not be optimal, at worst the coupled model will not converge. Techniques like mesh refinement, wave enrichment and compatible or incompatible meshes might offer a potential solution to the problem, but the model usually needs to be adjusted through a time consuming trial-and-error procedure. To tackle the problem, this paper considers a 2D coupled vibro-acoustic problem, in which the structural and acoustic domains, modeled with PUFEM, are coupled using compatible and incompatible meshes based on different coupling strategies. Numerical analyses show that the proposed method outperforms the classical finite element method by several orders of magnitude in terms of number of DoF. Recommendations are proposed on the technique to choose depending on the frequency range of interest in relation to the critical frequency of the structure to ensure the best convergence rate. Finally, an application example is presented to highlight the performance of the proposed method.
期刊介绍:
The aim of this journal is to provide an international forum for the dissemination of the state-of-the-art information in the field of Computational Acoustics.
Topics covered by this journal include research and tutorial contributions in OCEAN ACOUSTICS (a subject of active research in relation with sonar detection and the design of noiseless ships), SEISMO-ACOUSTICS (of concern to earthquake science and engineering, and also to those doing underground prospection like searching for petroleum), AEROACOUSTICS (which includes the analysis of noise created by aircraft), COMPUTATIONAL METHODS, and SUPERCOMPUTING. In addition to the traditional issues and problems in computational methods, the journal also considers theoretical research acoustics papers which lead to large-scale scientific computations.