由自同构诱导的广义中心对称矩阵代数

Pub Date : 2022-12-01 DOI:10.1142/s1005386722000426
Huabo Xu
{"title":"由自同构诱导的广义中心对称矩阵代数","authors":"Huabo Xu","doi":"10.1142/s1005386722000426","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a ring with an automorphism [Formula: see text] of order two. We introduce the definition of [Formula: see text]-centrosymmetric matrices. Denote by [Formula: see text] the ring of all [Formula: see text] matrices over [Formula: see text], and by [Formula: see text] the set of all [Formula: see text]-centrosymmetric [Formula: see text] matrices over [Formula: see text] for any positive integer [Formula: see text]. We show that [Formula: see text] is a separable Frobenius extension. If [Formula: see text] is commutative, then [Formula: see text] is a cellular algebra over the invariant subring [Formula: see text] of [Formula: see text].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Centrosymmetric Matrix Algebras Induced by Automorphisms\",\"authors\":\"Huabo Xu\",\"doi\":\"10.1142/s1005386722000426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text] be a ring with an automorphism [Formula: see text] of order two. We introduce the definition of [Formula: see text]-centrosymmetric matrices. Denote by [Formula: see text] the ring of all [Formula: see text] matrices over [Formula: see text], and by [Formula: see text] the set of all [Formula: see text]-centrosymmetric [Formula: see text] matrices over [Formula: see text] for any positive integer [Formula: see text]. We show that [Formula: see text] is a separable Frobenius extension. If [Formula: see text] is commutative, then [Formula: see text] is a cellular algebra over the invariant subring [Formula: see text] of [Formula: see text].\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386722000426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386722000426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设[公式:见文]是一个具有二阶自同构[公式:见文]的环。我们引入了[公式:见文本]-中心对称矩阵的定义。用[公式:见文本]表示所有[公式:见文本]矩阵的环,用[公式:见文本]表示所有[公式:见文本]-中心对称[公式:见文本]矩阵的集合,对于任何正整数[公式:见文本]。我们证明[公式:见文本]是一个可分离的Frobenius扩展。如果[公式:见文]是交换的,那么[公式:见文]是在[公式:见文]的不变子[公式:见文]上的元胞代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Generalized Centrosymmetric Matrix Algebras Induced by Automorphisms
Let [Formula: see text] be a ring with an automorphism [Formula: see text] of order two. We introduce the definition of [Formula: see text]-centrosymmetric matrices. Denote by [Formula: see text] the ring of all [Formula: see text] matrices over [Formula: see text], and by [Formula: see text] the set of all [Formula: see text]-centrosymmetric [Formula: see text] matrices over [Formula: see text] for any positive integer [Formula: see text]. We show that [Formula: see text] is a separable Frobenius extension. If [Formula: see text] is commutative, then [Formula: see text] is a cellular algebra over the invariant subring [Formula: see text] of [Formula: see text].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信