Banach空间中Suzuki广义非扩张映射的收敛定理

IF 0.7 Q2 MATHEMATICS
Abdulhamit Ekinci, S. Temir
{"title":"Banach空间中Suzuki广义非扩张映射的收敛定理","authors":"Abdulhamit Ekinci, S. Temir","doi":"10.5556/j.tkjm.54.2023.3943","DOIUrl":null,"url":null,"abstract":"In this paper, we study a new iterative scheme to approximate fixed point of Suzuki nonexpansive type mappings in Banach space. We also provesome weak and strong theorems for Suzuki nonexpansive typemappings. Numerical example is given to show the efficiency of newiteration process. The results obtained in this paper improve therecent ones announced by B. S. Thakur et al. \\cite{Thakur}, Ullahand Arschad \\cite{UA}.","PeriodicalId":45776,"journal":{"name":"Tamkang Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Convergence Theorems for Suzuki Generalized Nonexpansive Mapping in Banach Spaces\",\"authors\":\"Abdulhamit Ekinci, S. Temir\",\"doi\":\"10.5556/j.tkjm.54.2023.3943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study a new iterative scheme to approximate fixed point of Suzuki nonexpansive type mappings in Banach space. We also provesome weak and strong theorems for Suzuki nonexpansive typemappings. Numerical example is given to show the efficiency of newiteration process. The results obtained in this paper improve therecent ones announced by B. S. Thakur et al. \\\\cite{Thakur}, Ullahand Arschad \\\\cite{UA}.\",\"PeriodicalId\":45776,\"journal\":{\"name\":\"Tamkang Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tamkang Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5556/j.tkjm.54.2023.3943\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tamkang Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5556/j.tkjm.54.2023.3943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了Banach空间中Suzuki非膨胀型映射不动点的一种新的迭代逼近格式。我们还证明了Suzuki非扩张类型的弱定理和强定理。通过数值算例验证了该过程的有效性。本文得到的结果改进了b.s. Thakur等人\cite{Thakur}, Ullahand Arschad \cite{UA}最近公布的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence Theorems for Suzuki Generalized Nonexpansive Mapping in Banach Spaces
In this paper, we study a new iterative scheme to approximate fixed point of Suzuki nonexpansive type mappings in Banach space. We also provesome weak and strong theorems for Suzuki nonexpansive typemappings. Numerical example is given to show the efficiency of newiteration process. The results obtained in this paper improve therecent ones announced by B. S. Thakur et al. \cite{Thakur}, Ullahand Arschad \cite{UA}.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
11
期刊介绍: To promote research interactions between local and overseas researchers, the Department has been publishing an international mathematics journal, the Tamkang Journal of Mathematics. The journal started as a biannual journal in 1970 and is devoted to high-quality original research papers in pure and applied mathematics. In 1985 it has become a quarterly journal. The four issues are out for distribution at the end of March, June, September and December. The articles published in Tamkang Journal of Mathematics cover diverse mathematical disciplines. Submission of papers comes from all over the world. All articles are subjected to peer review from an international pool of referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信