相对化操作集理论

IF 0.7 3区 数学 Q1 LOGIC
Gerhard Jäger
{"title":"相对化操作集理论","authors":"Gerhard Jäger","doi":"10.1017/BSL.2016.11","DOIUrl":null,"url":null,"abstract":"We introduce a way of relativizing operational set theory that also takes care of application. After presenting the basic approach and proving some essential properties of this new form of relativization we turn to the notion of relativized regularity and to the system OST (LR) that extends OST by a limit axiom claiming that any set is element of a relativized regular set. Finally we show that OST (LR) is proof-theoretically equivalent to the well-known theory KPi for a recursively inaccessible universe.","PeriodicalId":55307,"journal":{"name":"Bulletin of Symbolic Logic","volume":"37 5","pages":"332-352"},"PeriodicalIF":0.7000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/BSL.2016.11","citationCount":"2","resultStr":"{\"title\":\"Relativizing Operational Set Theory\",\"authors\":\"Gerhard Jäger\",\"doi\":\"10.1017/BSL.2016.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a way of relativizing operational set theory that also takes care of application. After presenting the basic approach and proving some essential properties of this new form of relativization we turn to the notion of relativized regularity and to the system OST (LR) that extends OST by a limit axiom claiming that any set is element of a relativized regular set. Finally we show that OST (LR) is proof-theoretically equivalent to the well-known theory KPi for a recursively inaccessible universe.\",\"PeriodicalId\":55307,\"journal\":{\"name\":\"Bulletin of Symbolic Logic\",\"volume\":\"37 5\",\"pages\":\"332-352\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/BSL.2016.11\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Symbolic Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/BSL.2016.11\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Symbolic Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/BSL.2016.11","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 2

摘要

我们引入了一种相对化操作集理论的方法,同时也考虑了它的应用。在给出了这种新形式的相对论的基本方法和证明了一些基本性质之后,我们转向了相对正则性的概念和系统OST (LR),该系统通过一个极限公理来扩展OST,该公理宣称任何集合都是相对正则集的元素。最后,我们证明了OST (LR)在理论上与众所周知的递归不可达宇宙的理论KPi是等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relativizing Operational Set Theory
We introduce a way of relativizing operational set theory that also takes care of application. After presenting the basic approach and proving some essential properties of this new form of relativization we turn to the notion of relativized regularity and to the system OST (LR) that extends OST by a limit axiom claiming that any set is element of a relativized regular set. Finally we show that OST (LR) is proof-theoretically equivalent to the well-known theory KPi for a recursively inaccessible universe.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
32
审稿时长
>12 weeks
期刊介绍: The Bulletin of Symbolic Logic was established in 1995 by the Association for Symbolic Logic to provide a journal of high standards that would be both accessible and of interest to as wide an audience as possible. It is designed to cover all areas within the purview of the ASL: mathematical logic and its applications, philosophical and non-classical logic and its applications, history and philosophy of logic, and philosophy and methodology of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信