单项式警戒秩的一个新界

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
Kangjin Han, Hyunsuk Moon
{"title":"单项式警戒秩的一个新界","authors":"Kangjin Han, Hyunsuk Moon","doi":"10.1137/21M1390736","DOIUrl":null,"url":null,"abstract":"In this paper we consider the Waring rank of monomials over the real and the rational numbers. We give a new upper bound for it by establishing a way in which one can take a structured apolar set for any given monomial $X_0^{a_0}X_1^{a_1}\\cdots X_n^{a_n}$ ($a_i>0$). This bound coincides with the real Waring rank in the case $n=1$ and in the case $\\min(a_i)=1$, which are all the known cases for the real rank of monomials. Our bound is also lower than any other known general bounds for the real Waring rank. Since all of the constructions are still valid over the rational numbers, this provides a new result for the rational Waring rank of any monomial as well. Some examples and computational implementation for potential use are presented in the end.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2021-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A New Bound for the Waring Rank of Monomials\",\"authors\":\"Kangjin Han, Hyunsuk Moon\",\"doi\":\"10.1137/21M1390736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider the Waring rank of monomials over the real and the rational numbers. We give a new upper bound for it by establishing a way in which one can take a structured apolar set for any given monomial $X_0^{a_0}X_1^{a_1}\\\\cdots X_n^{a_n}$ ($a_i>0$). This bound coincides with the real Waring rank in the case $n=1$ and in the case $\\\\min(a_i)=1$, which are all the known cases for the real rank of monomials. Our bound is also lower than any other known general bounds for the real Waring rank. Since all of the constructions are still valid over the rational numbers, this provides a new result for the rational Waring rank of any monomial as well. Some examples and computational implementation for potential use are presented in the end.\",\"PeriodicalId\":48489,\"journal\":{\"name\":\"SIAM Journal on Applied Algebra and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Algebra and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/21M1390736\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/21M1390736","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了单项式在实数和有理数上的Waring秩。通过建立一种对任意给定单项式$X_0^{a_0}X_1^{a_1}\cdots X_n^{a_n}$ ($a_i>0$)取结构化极集的方法,给出了它的一个新的上界。这个界与已知单项式实数秩的所有已知情况$n=1$和$\min(a_i)=1$的实际Waring秩一致。我们的界也低于任何其他已知的实际韦林秩的一般界。由于所有的构造在有理数上仍然有效,这也为任何单项的有理数警戒秩提供了一个新的结果。最后给出了一些潜在应用的实例和计算实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Bound for the Waring Rank of Monomials
In this paper we consider the Waring rank of monomials over the real and the rational numbers. We give a new upper bound for it by establishing a way in which one can take a structured apolar set for any given monomial $X_0^{a_0}X_1^{a_1}\cdots X_n^{a_n}$ ($a_i>0$). This bound coincides with the real Waring rank in the case $n=1$ and in the case $\min(a_i)=1$, which are all the known cases for the real rank of monomials. Our bound is also lower than any other known general bounds for the real Waring rank. Since all of the constructions are still valid over the rational numbers, this provides a new result for the rational Waring rank of any monomial as well. Some examples and computational implementation for potential use are presented in the end.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信