{"title":"与对称空间相关的矢量海森堡铁磁体方程的解","authors":"T. Valchev, A. Yanovski","doi":"10.7546/GIQ-20-2019-285-296","DOIUrl":null,"url":null,"abstract":"In this report we consider a vector generalization of Heisenberg ferromagnet equation. That completely integrable system is related to a spectral problem in pole gauge for the Lie algebra sl(n + 1,C). We construct special solutions over constant background using dressing technique. MSC : 35C05, 35C08, 35G50, 37K15, 37K35","PeriodicalId":53425,"journal":{"name":"Geometry, Integrability and Quantization","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solutions to a Vector Heisenberg Ferromagnet Equation Related to Symmetric Spaces\",\"authors\":\"T. Valchev, A. Yanovski\",\"doi\":\"10.7546/GIQ-20-2019-285-296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this report we consider a vector generalization of Heisenberg ferromagnet equation. That completely integrable system is related to a spectral problem in pole gauge for the Lie algebra sl(n + 1,C). We construct special solutions over constant background using dressing technique. MSC : 35C05, 35C08, 35G50, 37K15, 37K35\",\"PeriodicalId\":53425,\"journal\":{\"name\":\"Geometry, Integrability and Quantization\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry, Integrability and Quantization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/GIQ-20-2019-285-296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry, Integrability and Quantization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/GIQ-20-2019-285-296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Solutions to a Vector Heisenberg Ferromagnet Equation Related to Symmetric Spaces
In this report we consider a vector generalization of Heisenberg ferromagnet equation. That completely integrable system is related to a spectral problem in pole gauge for the Lie algebra sl(n + 1,C). We construct special solutions over constant background using dressing technique. MSC : 35C05, 35C08, 35G50, 37K15, 37K35