有限群的置换算法

A. Ballester-Bolinches, Enric Cosme Llópez, R. Esteban-Romero
{"title":"有限群的置换算法","authors":"A. Ballester-Bolinches, Enric Cosme Llópez, R. Esteban-Romero","doi":"10.2478/s11533-013-0299-4","DOIUrl":null,"url":null,"abstract":"In this paper we describe some algorithms to identify permutable and Sylow-permutable subgroups of finite groups, Dedekind and Iwasawa finite groups, and finite T-groups (groups in which normality is transitive), PT-groups (groups in which permutability is transitive), and PST-groups (groups in which Sylow permutability is transitive). These algorithms have been implemented in a package for the computer algebra system GAP.","PeriodicalId":50988,"journal":{"name":"Central European Journal of Mathematics","volume":"81 4","pages":"1914-1922"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2478/s11533-013-0299-4","citationCount":"4","resultStr":"{\"title\":\"Algorithms for permutability in finite groups\",\"authors\":\"A. Ballester-Bolinches, Enric Cosme Llópez, R. Esteban-Romero\",\"doi\":\"10.2478/s11533-013-0299-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we describe some algorithms to identify permutable and Sylow-permutable subgroups of finite groups, Dedekind and Iwasawa finite groups, and finite T-groups (groups in which normality is transitive), PT-groups (groups in which permutability is transitive), and PST-groups (groups in which Sylow permutability is transitive). These algorithms have been implemented in a package for the computer algebra system GAP.\",\"PeriodicalId\":50988,\"journal\":{\"name\":\"Central European Journal of Mathematics\",\"volume\":\"81 4\",\"pages\":\"1914-1922\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2478/s11533-013-0299-4\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/s11533-013-0299-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11533-013-0299-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文描述了有限群、Dedekind和Iwasawa有限群、有限t群(正规可传递的群)、有限pt群(可置换可传递的群)和有限pst群(可置换可传递的群)的可置换和Sylow可置换群的若干识别算法。这些算法已在计算机代数系统GAP的软件包中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithms for permutability in finite groups
In this paper we describe some algorithms to identify permutable and Sylow-permutable subgroups of finite groups, Dedekind and Iwasawa finite groups, and finite T-groups (groups in which normality is transitive), PT-groups (groups in which permutability is transitive), and PST-groups (groups in which Sylow permutability is transitive). These algorithms have been implemented in a package for the computer algebra system GAP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
3-8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信