基于团簇的网络破裂度及启发式算法

IF 0.3 Q4 COMPUTER SCIENCE, THEORY & METHODS
Muammer Ağtaş, T. Turacı
{"title":"基于团簇的网络破裂度及启发式算法","authors":"Muammer Ağtaş, T. Turacı","doi":"10.2478/ausi-2023-0010","DOIUrl":null,"url":null,"abstract":"Abstract The rupture degree is one the most important vulnerability parameter in networks which are modelled by graphs. Let G(V (G),E (G)) be a simple undirected graph. The rupture degree is defined by r(G) = max{w(G–S )–|S |–m(G–S ):S ⊂ V (G) and w(G–S )>1} where m(G–S ) is the order of a largest connected component in G–S and w(G–S ) is the number of components of G–S, respectively. In this paper, we consider the vertex contraction method based on the network agglomeration operation for each vertex of G. Then, we have presented two graph vulnerability parameters called by agglomeration rupture degree and average lower agglomeration rupture degree. Furthermore, the exact values of them for some graph families are given. Finally, we proposed a polynomial time heuristic algorithm to obtain the values of agglomeration rupture degree and average","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"338 1","pages":"124 - 145"},"PeriodicalIF":0.3000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On agglomeration-based rupture degree in networks and a heuristic algorithm\",\"authors\":\"Muammer Ağtaş, T. Turacı\",\"doi\":\"10.2478/ausi-2023-0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The rupture degree is one the most important vulnerability parameter in networks which are modelled by graphs. Let G(V (G),E (G)) be a simple undirected graph. The rupture degree is defined by r(G) = max{w(G–S )–|S |–m(G–S ):S ⊂ V (G) and w(G–S )>1} where m(G–S ) is the order of a largest connected component in G–S and w(G–S ) is the number of components of G–S, respectively. In this paper, we consider the vertex contraction method based on the network agglomeration operation for each vertex of G. Then, we have presented two graph vulnerability parameters called by agglomeration rupture degree and average lower agglomeration rupture degree. Furthermore, the exact values of them for some graph families are given. Finally, we proposed a polynomial time heuristic algorithm to obtain the values of agglomeration rupture degree and average\",\"PeriodicalId\":41480,\"journal\":{\"name\":\"Acta Universitatis Sapientiae Informatica\",\"volume\":\"338 1\",\"pages\":\"124 - 145\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Universitatis Sapientiae Informatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausi-2023-0010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2023-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

摘要破裂度是网络中最重要的脆弱性参数之一,网络是用图来建模的。设G(V (G),E (G))是一个简单无向图。断裂度定义为r(G) = max{w(G - S) - |S | - m(G - S):S∧V (G)和w(G - S)>1},其中m(G - S)为G - S中最大连通分量的阶数,w(G - S)为G - S的分量个数。本文考虑基于g的每个顶点的网络团聚操作的顶点收缩方法,给出了两个图脆弱性参数,分别称为团聚破裂度和平均较低团聚破裂度。进一步给出了某些图族的精确值。最后,我们提出了一种多项式时间启发式算法来获得团聚破裂程度和平均值
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On agglomeration-based rupture degree in networks and a heuristic algorithm
Abstract The rupture degree is one the most important vulnerability parameter in networks which are modelled by graphs. Let G(V (G),E (G)) be a simple undirected graph. The rupture degree is defined by r(G) = max{w(G–S )–|S |–m(G–S ):S ⊂ V (G) and w(G–S )>1} where m(G–S ) is the order of a largest connected component in G–S and w(G–S ) is the number of components of G–S, respectively. In this paper, we consider the vertex contraction method based on the network agglomeration operation for each vertex of G. Then, we have presented two graph vulnerability parameters called by agglomeration rupture degree and average lower agglomeration rupture degree. Furthermore, the exact values of them for some graph families are given. Finally, we proposed a polynomial time heuristic algorithm to obtain the values of agglomeration rupture degree and average
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Universitatis Sapientiae Informatica
Acta Universitatis Sapientiae Informatica COMPUTER SCIENCE, THEORY & METHODS-
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信