综述了基于频繁项集的文档聚类的最新进展、研究趋势和应用

Q4 Mathematics
D. Rajput
{"title":"综述了基于频繁项集的文档聚类的最新进展、研究趋势和应用","authors":"D. Rajput","doi":"10.1504/IJDATS.2019.10018907","DOIUrl":null,"url":null,"abstract":"The document data is growing at an exponential rate. It is heterogeneous, dynamic and highly unstructured in nature. These characteristics of document data pose new challenges and opportunities for the development of various models and approaches for documents clustering. Different methods adopted for the development of these models. But these techniques have their advantages and disadvantages. The primary focus of the study is to the analysis of existing methods and approaches for document clustering based on frequent itemsets. Subsequently, this research direction facilitates the exploration of the emerging trends for each extension with applications. In this paper, more than 90 recent (published after 1990) research papers are summarised that are published in various reputed journals like IEEE Transaction, ScienceDirect, Springer-link, ACM and few fundamental authoritative articles.","PeriodicalId":38582,"journal":{"name":"International Journal of Data Analysis Techniques and Strategies","volume":"38 12","pages":"176-195"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Review on recent developments in frequent itemset based document clustering, its research trends and applications\",\"authors\":\"D. Rajput\",\"doi\":\"10.1504/IJDATS.2019.10018907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The document data is growing at an exponential rate. It is heterogeneous, dynamic and highly unstructured in nature. These characteristics of document data pose new challenges and opportunities for the development of various models and approaches for documents clustering. Different methods adopted for the development of these models. But these techniques have their advantages and disadvantages. The primary focus of the study is to the analysis of existing methods and approaches for document clustering based on frequent itemsets. Subsequently, this research direction facilitates the exploration of the emerging trends for each extension with applications. In this paper, more than 90 recent (published after 1990) research papers are summarised that are published in various reputed journals like IEEE Transaction, ScienceDirect, Springer-link, ACM and few fundamental authoritative articles.\",\"PeriodicalId\":38582,\"journal\":{\"name\":\"International Journal of Data Analysis Techniques and Strategies\",\"volume\":\"38 12\",\"pages\":\"176-195\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Analysis Techniques and Strategies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJDATS.2019.10018907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Analysis Techniques and Strategies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJDATS.2019.10018907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

摘要

文档数据正以指数速度增长。它在本质上是异构的、动态的和高度非结构化的。文档数据的这些特征为各种文档聚类模型和方法的发展提出了新的挑战和机遇。这些模型的开发采用了不同的方法。但这些技术有其优点和缺点。本文的研究重点是对现有的基于频繁项集的文档聚类方法进行分析。随后,该研究方向有助于探索每个扩展的新兴趋势和应用。本文总结了90多篇近期(1990年以后发表的)研究论文,这些论文发表在IEEE Transaction、ScienceDirect、Springer-link、ACM等各种知名期刊上,以及一些基础权威文章。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Review on recent developments in frequent itemset based document clustering, its research trends and applications
The document data is growing at an exponential rate. It is heterogeneous, dynamic and highly unstructured in nature. These characteristics of document data pose new challenges and opportunities for the development of various models and approaches for documents clustering. Different methods adopted for the development of these models. But these techniques have their advantages and disadvantages. The primary focus of the study is to the analysis of existing methods and approaches for document clustering based on frequent itemsets. Subsequently, this research direction facilitates the exploration of the emerging trends for each extension with applications. In this paper, more than 90 recent (published after 1990) research papers are summarised that are published in various reputed journals like IEEE Transaction, ScienceDirect, Springer-link, ACM and few fundamental authoritative articles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Data Analysis Techniques and Strategies
International Journal of Data Analysis Techniques and Strategies Decision Sciences-Information Systems and Management
CiteScore
1.20
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信