类数有限的大型博弈和Nash的“改进”证明

S. Kim
{"title":"类数有限的大型博弈和Nash的“改进”证明","authors":"S. Kim","doi":"10.17256/JER.2012.17.2.004","DOIUrl":null,"url":null,"abstract":"Nash (1951) proved the existence of mixed strategy Nash equilibria for finite games using Brouwer’s, rather than Kakutani’s, fixed point theorem. This paper adapts Nash’s (1951) proof to large games with a finite number of classes to establish the existence of pure strategy equilibria. The new approach sheds some light on the old results.","PeriodicalId":90860,"journal":{"name":"International journal of economic research","volume":"83 17","pages":"189-202"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Large Games with a Finite Number of Classes and Nash’s ‘Improved’ Proof\",\"authors\":\"S. Kim\",\"doi\":\"10.17256/JER.2012.17.2.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nash (1951) proved the existence of mixed strategy Nash equilibria for finite games using Brouwer’s, rather than Kakutani’s, fixed point theorem. This paper adapts Nash’s (1951) proof to large games with a finite number of classes to establish the existence of pure strategy equilibria. The new approach sheds some light on the old results.\",\"PeriodicalId\":90860,\"journal\":{\"name\":\"International journal of economic research\",\"volume\":\"83 17\",\"pages\":\"189-202\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of economic research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17256/JER.2012.17.2.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of economic research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17256/JER.2012.17.2.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

Nash(1951)使用Brouwer的不动点定理而不是Kakutani的不动点定理证明了有限博弈中混合策略纳什均衡的存在性。本文将纳什(1951)的证明应用于类数有限的大型对策,建立了纯策略均衡的存在性。新方法在一定程度上阐明了旧的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large Games with a Finite Number of Classes and Nash’s ‘Improved’ Proof
Nash (1951) proved the existence of mixed strategy Nash equilibria for finite games using Brouwer’s, rather than Kakutani’s, fixed point theorem. This paper adapts Nash’s (1951) proof to large games with a finite number of classes to establish the existence of pure strategy equilibria. The new approach sheds some light on the old results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信