{"title":"农作物产量的数学模型","authors":"A. Likhatsevich","doi":"10.29235/1817-7204-2021-59-3-304-318","DOIUrl":null,"url":null,"abstract":"Theoretical basis for presenting research results in agricultural science is mathematical statistics and probability theory using empirical forms of generalization of experimental data. To improve the methods of planning field experiment and processing its data using digital technologies, we proposed to use mathematical modeling based on physical principle of balance of cause-and-effect interactions in a closed physical system as a priority option. When analyzing impact of environmental factors on crop yields, the initial provisions, the mathematical modeling of the crop yield is based, on are not associated with characteristics of crops and natural conditions, therefore, the model options are universal in application and are valid for any agricultural crop, regardless of the region of cultivation. To ensure statistically correct digital information, based on the established forms of mathematical model, the field experiment layout aimed at establishing the dependence of the crop yield on yield-forming factors should include at least 4 options for nutritional levels (NPK) with a research duration of at least 4 years. To check the accuracy of the developed crop yield model, the data of independent field experiments of Professor N.N. Semenenko with barley and winter triticale has been used. It has been determined that, in Belarus, yield-forming factors, as a result of their impact on the grain yield, are arranged in the following decreasing sequence: total dose of applied NPK º the amount of precipitation during the active phases of growing season → air temperature for the same period. Calculations have shown that decrease in the number of yield-forming factors taken into account in the mathematical model from three (food, moisture and heat) to two (food and moisture) reduces the accuracy of calculating the grain crop yield insignificantly.","PeriodicalId":41146,"journal":{"name":"Proceedings of the National Academy of Sciences of Belarus-Agrarian Series","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mathematical model of agricultural crop yield\",\"authors\":\"A. Likhatsevich\",\"doi\":\"10.29235/1817-7204-2021-59-3-304-318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Theoretical basis for presenting research results in agricultural science is mathematical statistics and probability theory using empirical forms of generalization of experimental data. To improve the methods of planning field experiment and processing its data using digital technologies, we proposed to use mathematical modeling based on physical principle of balance of cause-and-effect interactions in a closed physical system as a priority option. When analyzing impact of environmental factors on crop yields, the initial provisions, the mathematical modeling of the crop yield is based, on are not associated with characteristics of crops and natural conditions, therefore, the model options are universal in application and are valid for any agricultural crop, regardless of the region of cultivation. To ensure statistically correct digital information, based on the established forms of mathematical model, the field experiment layout aimed at establishing the dependence of the crop yield on yield-forming factors should include at least 4 options for nutritional levels (NPK) with a research duration of at least 4 years. To check the accuracy of the developed crop yield model, the data of independent field experiments of Professor N.N. Semenenko with barley and winter triticale has been used. It has been determined that, in Belarus, yield-forming factors, as a result of their impact on the grain yield, are arranged in the following decreasing sequence: total dose of applied NPK º the amount of precipitation during the active phases of growing season → air temperature for the same period. Calculations have shown that decrease in the number of yield-forming factors taken into account in the mathematical model from three (food, moisture and heat) to two (food and moisture) reduces the accuracy of calculating the grain crop yield insignificantly.\",\"PeriodicalId\":41146,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of Belarus-Agrarian Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2021-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of Belarus-Agrarian Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29235/1817-7204-2021-59-3-304-318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of Belarus-Agrarian Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29235/1817-7204-2021-59-3-304-318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Theoretical basis for presenting research results in agricultural science is mathematical statistics and probability theory using empirical forms of generalization of experimental data. To improve the methods of planning field experiment and processing its data using digital technologies, we proposed to use mathematical modeling based on physical principle of balance of cause-and-effect interactions in a closed physical system as a priority option. When analyzing impact of environmental factors on crop yields, the initial provisions, the mathematical modeling of the crop yield is based, on are not associated with characteristics of crops and natural conditions, therefore, the model options are universal in application and are valid for any agricultural crop, regardless of the region of cultivation. To ensure statistically correct digital information, based on the established forms of mathematical model, the field experiment layout aimed at establishing the dependence of the crop yield on yield-forming factors should include at least 4 options for nutritional levels (NPK) with a research duration of at least 4 years. To check the accuracy of the developed crop yield model, the data of independent field experiments of Professor N.N. Semenenko with barley and winter triticale has been used. It has been determined that, in Belarus, yield-forming factors, as a result of their impact on the grain yield, are arranged in the following decreasing sequence: total dose of applied NPK º the amount of precipitation during the active phases of growing season → air temperature for the same period. Calculations have shown that decrease in the number of yield-forming factors taken into account in the mathematical model from three (food, moisture and heat) to two (food and moisture) reduces the accuracy of calculating the grain crop yield insignificantly.