基于剧情梗概的电影类型分类中KNN、Naïve贝叶斯和SVM算法的比较分析。

Nurhayati Buslim, Lee Kyung Oh, Muhammad Hugo Athallah Hardy, Yusuf Wijaya
{"title":"基于剧情梗概的电影类型分类中KNN、Naïve贝叶斯和SVM算法的比较分析。","authors":"Nurhayati Buslim, Lee Kyung Oh, Muhammad Hugo Athallah Hardy, Yusuf Wijaya","doi":"10.15408/jti.v15i2.29302","DOIUrl":null,"url":null,"abstract":"Text classification is a process of categorizing a text into the correct label. Text classification in natural language processing is a challenging task that requires accuracy to get the correct results, manual text classification tends to be inefficient because it requires a lot of time and also experts. The utilization of machine learning for automatic text classification can be a solution to this problem. KNN, Naive Bayes, and SVM are known as some of the most algorithms to solve classification problems, especially text classification. In this study, we are trying to compare the KNN, Naive Bayes, and SVM algorithms for text classification with the problem of classifying movie genres based on a synopsis using datasets obtained from Kaggle.com and IMDB Dataset. The results of this study indicate that of the 12 experiments, Support Vector Machine (SVM) is the bestperforming algorithm with an accuracy of 90%, 93%, 65%, and 63%. It is hoped that this research can help to determine the best algorithm in the text classification process. ","PeriodicalId":52586,"journal":{"name":"Jurnal Sarjana Teknik Informatika","volume":"164 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Analysis of KNN, Naïve Bayes and SVM Algorithms for Movie Genres Classification Based on Synopsis.\",\"authors\":\"Nurhayati Buslim, Lee Kyung Oh, Muhammad Hugo Athallah Hardy, Yusuf Wijaya\",\"doi\":\"10.15408/jti.v15i2.29302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text classification is a process of categorizing a text into the correct label. Text classification in natural language processing is a challenging task that requires accuracy to get the correct results, manual text classification tends to be inefficient because it requires a lot of time and also experts. The utilization of machine learning for automatic text classification can be a solution to this problem. KNN, Naive Bayes, and SVM are known as some of the most algorithms to solve classification problems, especially text classification. In this study, we are trying to compare the KNN, Naive Bayes, and SVM algorithms for text classification with the problem of classifying movie genres based on a synopsis using datasets obtained from Kaggle.com and IMDB Dataset. The results of this study indicate that of the 12 experiments, Support Vector Machine (SVM) is the bestperforming algorithm with an accuracy of 90%, 93%, 65%, and 63%. It is hoped that this research can help to determine the best algorithm in the text classification process. \",\"PeriodicalId\":52586,\"journal\":{\"name\":\"Jurnal Sarjana Teknik Informatika\",\"volume\":\"164 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Sarjana Teknik Informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15408/jti.v15i2.29302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Sarjana Teknik Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15408/jti.v15i2.29302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

文本分类是将文本分类为正确标签的过程。自然语言处理中的文本分类是一项具有挑战性的任务,需要准确地得到正确的结果,而人工文本分类往往效率低下,因为它需要大量的时间和专家。利用机器学习进行文本自动分类可以解决这个问题。KNN、朴素贝叶斯和支持向量机被认为是解决分类问题,特别是文本分类的一些最常用的算法。在这项研究中,我们试图将KNN、朴素贝叶斯和支持向量机算法用于文本分类,并使用来自Kaggle.com和IMDB数据集的数据集,将基于摘要的电影类型分类问题进行比较。本研究的结果表明,在12个实验中,支持向量机(SVM)是表现最好的算法,准确率分别为90%、93%、65%和63%。希望本研究能够帮助确定文本分类过程中的最佳算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Analysis of KNN, Naïve Bayes and SVM Algorithms for Movie Genres Classification Based on Synopsis.
Text classification is a process of categorizing a text into the correct label. Text classification in natural language processing is a challenging task that requires accuracy to get the correct results, manual text classification tends to be inefficient because it requires a lot of time and also experts. The utilization of machine learning for automatic text classification can be a solution to this problem. KNN, Naive Bayes, and SVM are known as some of the most algorithms to solve classification problems, especially text classification. In this study, we are trying to compare the KNN, Naive Bayes, and SVM algorithms for text classification with the problem of classifying movie genres based on a synopsis using datasets obtained from Kaggle.com and IMDB Dataset. The results of this study indicate that of the 12 experiments, Support Vector Machine (SVM) is the bestperforming algorithm with an accuracy of 90%, 93%, 65%, and 63%. It is hoped that this research can help to determine the best algorithm in the text classification process. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
15
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信