密集展开图的路由数

IF 0.4 Q4 MATHEMATICS, APPLIED
P. Horn, Adam Purcilly
{"title":"密集展开图的路由数","authors":"P. Horn, Adam Purcilly","doi":"10.4310/joc.2020.v11.n2.a5","DOIUrl":null,"url":null,"abstract":"Consider a connected graph G , with a pebble placed on each vertex of G . The routing number, rt ( G ), of G is the minimum number of steps needed to route any permutation on the vertices of G , where a step consists of selecting a matching in the graph and swapping the pebbles on the endpoints of each edge. Alon, Chung, and Graham [ SIAM J. Discrete Math. , 7 (1994), pp. 516–530.] introduced this parameter, and (among other results) gave a bound based on the spectral gap for general graphs. The bound they obtain is poly-logarithmic for graphs with a sufficiently strong spectral gap. In this paper, we use spectral properties and probablistic methods to investigate when this upper bound can be improved to be constant depending on the gap and the vertex degrees.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"430 ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Routing number of dense and expanding graphs\",\"authors\":\"P. Horn, Adam Purcilly\",\"doi\":\"10.4310/joc.2020.v11.n2.a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider a connected graph G , with a pebble placed on each vertex of G . The routing number, rt ( G ), of G is the minimum number of steps needed to route any permutation on the vertices of G , where a step consists of selecting a matching in the graph and swapping the pebbles on the endpoints of each edge. Alon, Chung, and Graham [ SIAM J. Discrete Math. , 7 (1994), pp. 516–530.] introduced this parameter, and (among other results) gave a bound based on the spectral gap for general graphs. The bound they obtain is poly-logarithmic for graphs with a sufficiently strong spectral gap. In this paper, we use spectral properties and probablistic methods to investigate when this upper bound can be improved to be constant depending on the gap and the vertex degrees.\",\"PeriodicalId\":44683,\"journal\":{\"name\":\"Journal of Combinatorics\",\"volume\":\"430 \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/joc.2020.v11.n2.a5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/joc.2020.v11.n2.a5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

考虑一个连通图G,在G的每个顶点上都有一个小石子。G的路由数rt (G)是在G的顶点上路由任何排列所需的最小步数,其中一个步骤包括在图中选择一个匹配并交换每个边端点上的鹅卵石。Alon, Chung, and Graham [SIAM J.离散数学]。, 7(1994),第516-530页。]引入了这个参数,并且(在其他结果中)给出了基于一般图的谱间隙的界。对于具有足够强谱隙的图,他们得到的界是多对数的。在本文中,我们利用谱性质和概率方法来研究该上界何时可以根据间隙和顶点度改进为常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Routing number of dense and expanding graphs
Consider a connected graph G , with a pebble placed on each vertex of G . The routing number, rt ( G ), of G is the minimum number of steps needed to route any permutation on the vertices of G , where a step consists of selecting a matching in the graph and swapping the pebbles on the endpoints of each edge. Alon, Chung, and Graham [ SIAM J. Discrete Math. , 7 (1994), pp. 516–530.] introduced this parameter, and (among other results) gave a bound based on the spectral gap for general graphs. The bound they obtain is poly-logarithmic for graphs with a sufficiently strong spectral gap. In this paper, we use spectral properties and probablistic methods to investigate when this upper bound can be improved to be constant depending on the gap and the vertex degrees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Combinatorics
Journal of Combinatorics MATHEMATICS, APPLIED-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信