{"title":"夜间人造光的强度和光谱改变了小龙虾的相互作用","authors":"K. M. Jackson, P. Moore","doi":"10.1080/10236244.2019.1663124","DOIUrl":null,"url":null,"abstract":"ABSTRACT Ecological light pollution (ELP) is quickly becoming a worldwide concern and can negatively affect aquatic ecosystems. The given intensity and spectrum of a light source can influence how organisms function within their environment. These properties of artificial lighting at night (ALAN) and their impacts on the physiology and behaviour of crayfish were examined in this work. Hemolymph was obtained from crayfish to quantify a physiological response. Behavioural data were measured as the number, duration, and maximum intensity of agonistic fights. Exposure to higher intensities of light and the presence of ultraviolet light induced a behavioural trend, resulting in significantly altered social interactions within both species of crayfish. The number and maximum intensity of lights significantly decreased, whereas the duration of time spent fighting significantly increased. Due to the importance of freshwater environments and the role crayfish play as a keystone species, examining how crayfish are impacted from ALAN is imperative to maintaining the health of aquatic ecosystems.","PeriodicalId":18210,"journal":{"name":"Marine and Freshwater Behaviour and Physiology","volume":"61 15","pages":"131 - 150"},"PeriodicalIF":0.9000,"publicationDate":"2019-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10236244.2019.1663124","citationCount":"8","resultStr":"{\"title\":\"The intensity and spectrum of artificial light at night alters crayfish interactions\",\"authors\":\"K. M. Jackson, P. Moore\",\"doi\":\"10.1080/10236244.2019.1663124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Ecological light pollution (ELP) is quickly becoming a worldwide concern and can negatively affect aquatic ecosystems. The given intensity and spectrum of a light source can influence how organisms function within their environment. These properties of artificial lighting at night (ALAN) and their impacts on the physiology and behaviour of crayfish were examined in this work. Hemolymph was obtained from crayfish to quantify a physiological response. Behavioural data were measured as the number, duration, and maximum intensity of agonistic fights. Exposure to higher intensities of light and the presence of ultraviolet light induced a behavioural trend, resulting in significantly altered social interactions within both species of crayfish. The number and maximum intensity of lights significantly decreased, whereas the duration of time spent fighting significantly increased. Due to the importance of freshwater environments and the role crayfish play as a keystone species, examining how crayfish are impacted from ALAN is imperative to maintaining the health of aquatic ecosystems.\",\"PeriodicalId\":18210,\"journal\":{\"name\":\"Marine and Freshwater Behaviour and Physiology\",\"volume\":\"61 15\",\"pages\":\"131 - 150\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/10236244.2019.1663124\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine and Freshwater Behaviour and Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/10236244.2019.1663124\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine and Freshwater Behaviour and Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10236244.2019.1663124","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
The intensity and spectrum of artificial light at night alters crayfish interactions
ABSTRACT Ecological light pollution (ELP) is quickly becoming a worldwide concern and can negatively affect aquatic ecosystems. The given intensity and spectrum of a light source can influence how organisms function within their environment. These properties of artificial lighting at night (ALAN) and their impacts on the physiology and behaviour of crayfish were examined in this work. Hemolymph was obtained from crayfish to quantify a physiological response. Behavioural data were measured as the number, duration, and maximum intensity of agonistic fights. Exposure to higher intensities of light and the presence of ultraviolet light induced a behavioural trend, resulting in significantly altered social interactions within both species of crayfish. The number and maximum intensity of lights significantly decreased, whereas the duration of time spent fighting significantly increased. Due to the importance of freshwater environments and the role crayfish play as a keystone species, examining how crayfish are impacted from ALAN is imperative to maintaining the health of aquatic ecosystems.
期刊介绍:
Marine and Freshwater Behaviour and Physiology is devoted to the publication of papers covering field and laboratory research into all aspects of the behaviour and physiology of all marine and freshwater animals within the contexts of ecology, evolution and conservation.
As the living resources of the world’s oceans, rivers and lakes are attracting increasing attention as food sources for humans and for their role in global ecology, the journal will also publish the results of research in the areas of fisheries biology and technology where the behaviour and physiology described have clear links to the contexts mentioned above.
The journal will accept for publication Research Articles, Reviews, Rapid Communications and Technical Notes (see Instructions for authors for details). In addition, Editorials, Opinions and Book Reviews (invited and suggested) will also occasionally be published. Suggestions to the Editor-In-Chief for Special Issues are encouraged and will be considered on an ad hoc basis.
With the goal of supporting early career researchers, the journal particularly invites submissions from graduate students and post-doctoral researchers. In addition to recognising the time constraints and logistical limitations their research often faces, and their particular need for a prompt review process, accepted articles by such researchers will be given prominence within the journal (see Instructions for authors for details).