求解方程和方程组的有效多步格式的球收敛性

Q4 Mathematics
I. Argyros, S. George
{"title":"求解方程和方程组的有效多步格式的球收敛性","authors":"I. Argyros, S. George","doi":"10.4064/AM2416-7-2020","DOIUrl":null,"url":null,"abstract":". Attention has been given recently to the study of local convergence of multi-step schemes to increase the convergence order for solving Banach space valued equations. The convergence criteria involve higher order derivatives, limiting applicability of these methods. In this study we use the first derivative only in our analysis to extend the usage of these schemes. The technique we use can be applied to other schemes to obtain the same advantages. Numerical experiments compare favorably our results to earlier ones.","PeriodicalId":52313,"journal":{"name":"Applicationes Mathematicae","volume":"9 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ball convergence of an efficient multi-step scheme for solving equationsand systems of equations\",\"authors\":\"I. Argyros, S. George\",\"doi\":\"10.4064/AM2416-7-2020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Attention has been given recently to the study of local convergence of multi-step schemes to increase the convergence order for solving Banach space valued equations. The convergence criteria involve higher order derivatives, limiting applicability of these methods. In this study we use the first derivative only in our analysis to extend the usage of these schemes. The technique we use can be applied to other schemes to obtain the same advantages. Numerical experiments compare favorably our results to earlier ones.\",\"PeriodicalId\":52313,\"journal\":{\"name\":\"Applicationes Mathematicae\",\"volume\":\"9 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applicationes Mathematicae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4064/AM2416-7-2020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicationes Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/AM2416-7-2020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

. 为了提高求解Banach空间值方程的收敛阶数,近年来人们对多步格式的局部收敛性进行了研究。收敛准则涉及高阶导数,限制了这些方法的适用性。在本研究中,我们仅在分析中使用一阶导数来扩展这些格式的使用。我们使用的技术可以应用于其他方案以获得相同的优势。数值实验表明,我们的结果与先前的结果相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ball convergence of an efficient multi-step scheme for solving equationsand systems of equations
. Attention has been given recently to the study of local convergence of multi-step schemes to increase the convergence order for solving Banach space valued equations. The convergence criteria involve higher order derivatives, limiting applicability of these methods. In this study we use the first derivative only in our analysis to extend the usage of these schemes. The technique we use can be applied to other schemes to obtain the same advantages. Numerical experiments compare favorably our results to earlier ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applicationes Mathematicae
Applicationes Mathematicae Mathematics-Applied Mathematics
CiteScore
0.30
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信