采用滑模控制技术的分数阶rabinoich - fabrikant系统同步

IF 1.1 4区 计算机科学 Q4 AUTOMATION & CONTROL SYSTEMS
Sanjay Kumar, Chaman Singh, S. Prasad, CHANDRA SHEKHAR, R. Aggarwal
{"title":"采用滑模控制技术的分数阶rabinoich - fabrikant系统同步","authors":"Sanjay Kumar, Chaman Singh, S. Prasad, CHANDRA SHEKHAR, R. Aggarwal","doi":"10.24425/acs.2019.129384","DOIUrl":null,"url":null,"abstract":"In this research article, we present the concepts of fractional-order dynamical systems and synchronization methodologies of fractional order chaotic dynamical systems using slide mode control techniques. We have analysed the different phase portraits and time-series graphs of fractional order Rabinovich-Fabrikant systems. We have obtained that the lowest dimension of Rabinovich-Fabrikant system is 2.85 through utilization of the fractional calculus and computational simulation. Bifurcation diagrams and Lyapunov exponents of fractional order Rabinovich-Fabrikant system to justify the chaos in the systems. Synchronization of two identical fractional-order chaotic Rabinovich-Fabrikant systems are achieved using sliding mode control methodology.","PeriodicalId":48654,"journal":{"name":"Archives of Control Sciences","volume":"38 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Synchronization of fractional order Rabinovich-Fabrikant systems using sliding mode control techniques\",\"authors\":\"Sanjay Kumar, Chaman Singh, S. Prasad, CHANDRA SHEKHAR, R. Aggarwal\",\"doi\":\"10.24425/acs.2019.129384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research article, we present the concepts of fractional-order dynamical systems and synchronization methodologies of fractional order chaotic dynamical systems using slide mode control techniques. We have analysed the different phase portraits and time-series graphs of fractional order Rabinovich-Fabrikant systems. We have obtained that the lowest dimension of Rabinovich-Fabrikant system is 2.85 through utilization of the fractional calculus and computational simulation. Bifurcation diagrams and Lyapunov exponents of fractional order Rabinovich-Fabrikant system to justify the chaos in the systems. Synchronization of two identical fractional-order chaotic Rabinovich-Fabrikant systems are achieved using sliding mode control methodology.\",\"PeriodicalId\":48654,\"journal\":{\"name\":\"Archives of Control Sciences\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Control Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.24425/acs.2019.129384\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Control Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.24425/acs.2019.129384","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 3

摘要

在这篇研究文章中,我们提出了分数阶动力系统的概念和分数阶混沌动力系统的同步方法,采用滑模控制技术。我们分析了分数阶rabinovitch - fabrikant系统的不同相图和时间序列图。利用分数阶微积分和计算模拟得到rabinovitch - fabrikant系统的最低维数为2.85。分数阶rabinovitch - fabrikant系统的分岔图和Lyapunov指数来证明系统中的混沌。采用滑模控制方法实现了两个相同分数阶混沌rabinovitch - fabrikant系统的同步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synchronization of fractional order Rabinovich-Fabrikant systems using sliding mode control techniques
In this research article, we present the concepts of fractional-order dynamical systems and synchronization methodologies of fractional order chaotic dynamical systems using slide mode control techniques. We have analysed the different phase portraits and time-series graphs of fractional order Rabinovich-Fabrikant systems. We have obtained that the lowest dimension of Rabinovich-Fabrikant system is 2.85 through utilization of the fractional calculus and computational simulation. Bifurcation diagrams and Lyapunov exponents of fractional order Rabinovich-Fabrikant system to justify the chaos in the systems. Synchronization of two identical fractional-order chaotic Rabinovich-Fabrikant systems are achieved using sliding mode control methodology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Control Sciences
Archives of Control Sciences Mathematics-Modeling and Simulation
CiteScore
2.40
自引率
33.30%
发文量
0
审稿时长
14 weeks
期刊介绍: Archives of Control Sciences welcomes for consideration papers on topics of significance in broadly understood control science and related areas, including: basic control theory, optimal control, optimization methods, control of complex systems, mathematical modeling of dynamic and control systems, expert and decision support systems and diverse methods of knowledge modelling and representing uncertainty (by stochastic, set-valued, fuzzy or rough set methods, etc.), robotics and flexible manufacturing systems. Related areas that are covered include information technology, parallel and distributed computations, neural networks and mathematical biomedicine, mathematical economics, applied game theory, financial engineering, business informatics and other similar fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信