{"title":"极限点为0的概周期函数的傅里叶级数的绝对Cesáro可和性","authors":"Y. Khasanov","doi":"10.13108/2016-8-4-144","DOIUrl":null,"url":null,"abstract":"In the paper we establish some tests for absolute Cesáro summability of the Fourier series for almost periodic functions in the Besicovitch space. We consider the case, when the Fourier exponents have a limiting point at zero and as a structure characteristics of the studied function, we use a high order averaging modulus.","PeriodicalId":43644,"journal":{"name":"Ufa Mathematical Journal","volume":"69 2","pages":"144-151"},"PeriodicalIF":0.5000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On absolute Cesáro summablity of Fourier series for almost-periodic functions with limiting points at zero\",\"authors\":\"Y. Khasanov\",\"doi\":\"10.13108/2016-8-4-144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper we establish some tests for absolute Cesáro summability of the Fourier series for almost periodic functions in the Besicovitch space. We consider the case, when the Fourier exponents have a limiting point at zero and as a structure characteristics of the studied function, we use a high order averaging modulus.\",\"PeriodicalId\":43644,\"journal\":{\"name\":\"Ufa Mathematical Journal\",\"volume\":\"69 2\",\"pages\":\"144-151\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ufa Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13108/2016-8-4-144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ufa Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13108/2016-8-4-144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
On absolute Cesáro summablity of Fourier series for almost-periodic functions with limiting points at zero
In the paper we establish some tests for absolute Cesáro summability of the Fourier series for almost periodic functions in the Besicovitch space. We consider the case, when the Fourier exponents have a limiting point at zero and as a structure characteristics of the studied function, we use a high order averaging modulus.