基于小波变换模极大值和BP神经网络的车牌识别

Lin Huang, Tiejun Yang
{"title":"基于小波变换模极大值和BP神经网络的车牌识别","authors":"Lin Huang, Tiejun Yang","doi":"10.1109/ICNC.2012.6234668","DOIUrl":null,"url":null,"abstract":"License plate recognition is an important part of intelligent transportation systems, and image feature extraction and recognition are the key processes. This paper describes a method of license plate identification. Firstly, wavelet transform modulus maxima is used to detect edges for the segmented characters of the plate, then the features of relative moment are extracted. Secondly, the features are fed into BP neural network for classification. Experiment results show that the method is efficient and has good recognition rate.","PeriodicalId":87274,"journal":{"name":"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications","volume":"95 S91","pages":"295-297"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ICNC.2012.6234668","citationCount":"5","resultStr":"{\"title\":\"Vehicle license plate recognition based on wavelet transform modulus maxima and BP neural network\",\"authors\":\"Lin Huang, Tiejun Yang\",\"doi\":\"10.1109/ICNC.2012.6234668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"License plate recognition is an important part of intelligent transportation systems, and image feature extraction and recognition are the key processes. This paper describes a method of license plate identification. Firstly, wavelet transform modulus maxima is used to detect edges for the segmented characters of the plate, then the features of relative moment are extracted. Secondly, the features are fed into BP neural network for classification. Experiment results show that the method is efficient and has good recognition rate.\",\"PeriodicalId\":87274,\"journal\":{\"name\":\"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications\",\"volume\":\"95 S91\",\"pages\":\"295-297\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/ICNC.2012.6234668\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2012.6234668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2012.6234668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

车牌识别是智能交通系统的重要组成部分,其中图像特征提取和识别是关键环节。本文介绍了一种车牌识别方法。首先利用小波变换模极大值对分割后的图像特征进行边缘检测,然后提取相对矩特征;其次,将特征输入BP神经网络进行分类;实验结果表明,该方法具有良好的识别率和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vehicle license plate recognition based on wavelet transform modulus maxima and BP neural network
License plate recognition is an important part of intelligent transportation systems, and image feature extraction and recognition are the key processes. This paper describes a method of license plate identification. Firstly, wavelet transform modulus maxima is used to detect edges for the segmented characters of the plate, then the features of relative moment are extracted. Secondly, the features are fed into BP neural network for classification. Experiment results show that the method is efficient and has good recognition rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信