{"title":"阿基米德定理在抛物线段面积上的推广","authors":"A. Grigoryan, S. Ignaciuk, M. Parol","doi":"10.2478/auom-2021-0026","DOIUrl":null,"url":null,"abstract":"Abstract Archimedes’ well known theorem on the area of a parabolic segment says that this area is 4/3 of the area of a certain inscribed triangle. In this paper we generalize this theorem to the n-dimensional euclidean space, n ≥ 3. It appears that the ratio of the volume of an n-dimensional solid bounded by an (n − 1)-dimensional hyper-paraboloid and an (n − 1)-dimensional hyperplane and the volume of a certain inscribed cone (we analogously repeat Archimedes’ procedure) depends only on the dimension of the euclidean space and it equals to 2n/(n +1).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Generalization of Archimedes’ Theorem on the Area of a Parabolic Segment\",\"authors\":\"A. Grigoryan, S. Ignaciuk, M. Parol\",\"doi\":\"10.2478/auom-2021-0026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Archimedes’ well known theorem on the area of a parabolic segment says that this area is 4/3 of the area of a certain inscribed triangle. In this paper we generalize this theorem to the n-dimensional euclidean space, n ≥ 3. It appears that the ratio of the volume of an n-dimensional solid bounded by an (n − 1)-dimensional hyper-paraboloid and an (n − 1)-dimensional hyperplane and the volume of a certain inscribed cone (we analogously repeat Archimedes’ procedure) depends only on the dimension of the euclidean space and it equals to 2n/(n +1).\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/auom-2021-0026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2021-0026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Generalization of Archimedes’ Theorem on the Area of a Parabolic Segment
Abstract Archimedes’ well known theorem on the area of a parabolic segment says that this area is 4/3 of the area of a certain inscribed triangle. In this paper we generalize this theorem to the n-dimensional euclidean space, n ≥ 3. It appears that the ratio of the volume of an n-dimensional solid bounded by an (n − 1)-dimensional hyper-paraboloid and an (n − 1)-dimensional hyperplane and the volume of a certain inscribed cone (we analogously repeat Archimedes’ procedure) depends only on the dimension of the euclidean space and it equals to 2n/(n +1).